0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

【无线通信篇】ASK调制信号的MATLAB仿真

454398 来源:MYMINIEYE微信公众号 作者:MYMINIEYE微信公众号 2020-11-03 10:45 次阅读

1.ASK信号的调制原理

数字信号对载波信号的振幅调制称为振幅键控,即ASK。

在2ASK调制系统中,数字信息只有0和1两种,所调制的载波信号的幅度变化状态也只有两种:无载波输出时代表发送0;有载波输出时代表发送1。

在4ASK调制系统中,数字信息就有00、01、10、11四种,需要载波信号幅度的4个电平状态表示。显然,进制越大,相同频带内可以传输的数据信息量也就越多,即频带利用率越高。

ASK调制系统的模型如下所示:

ASK信号产生模型

基带信号m(t)可以看作一串由0、1组成的矩形脉冲信号,理论上其带宽是无限的,与载波信号调制之后的键控信号s(t)带宽也是无限的。工程中为了提高频带利用率,需要对信号带宽做限制,通常只需要将在主瓣带宽内包含90%能量的信号发送出去即可。

在频带资源比较紧张的情况下,为进一步降低信号的带宽,提高频带利用率,一种常用的方法就是在调制之前对基带信号进行成型滤波,如上图ASK信号产生模型所示。

2.ASK调制信号的MATLAB仿真

FPGA设计前通常都会使用MATLAB对系统进行建模与仿真。设计ASK调制系统时,选定系统参数,如下所示:

码元长度(Len)

1000

码元速率(Rb)

1Mbps

采样频率(Fs)

8MHz

数据长度(LenData)

8000

载波频率(Fc)

70MHz

Matlab主要程序如下:

程序运行之后,生成2ASK的时域波形以及频谱如下:

从ASK信号的频谱图可以看出,经过成型滤波之后的信号频谱已经滤除了主瓣外的频率成分,采样后的载频分量被搬移到了2MHz处。采样后的载波频率fas = k*fs±fc,其中k为整数,当k=9时,fas=9*8-70=2MHz。

3.ASK调制信号的FPGA实现

前面采用MATLAB对ASK信号进行了仿真,接下来在Vivado开发环境下完成2ASK调制技术的设计并进行仿真。键控法实现ASK的FPGA十分简单,如下所示:

采用开关(键控)方式产生ASK调制信号,输入到DAC之前,在FPGA内部可以用一个数字带通滤波器对信号频带进行限制,关键在于产生本地载波信号,无论是Altera还是Xinlinx都提供了NCO核,我们可以根据需要,设置相应的参数后,就可以产生载波信号。

DDS/NCO核的参数的主要设置为:

• SystemClock : 8MHz

• ParameterSelection : Hardware Parameters

• PhaseWidth : 32

• OutputWidth : 14

• PhaseIncrement Programmability : Programmable

• Phaseoffset Programmability : None

• OutputSelection : Sine

输出频率为2MHz,相位累加器设置为 32’d1073741824。

主要程序如下,其中sine是DDS/NCO的输出信号,当进行4ASK调制的时候,输出信号的幅度有四种,需要合理设置中间值,分别为最大幅值的1/3和2/3,在FPGA实现除法是比较复杂和耗时的,这里采用了近似的方法,采用移位法实现0.3281(≈1/3)和0.6563(≈2/3)倍最大幅值。

最后的仿真为

FPGA实现后的2ASK调制信号仿真波形

FPGA实现后的4ASK调制信号仿真波形

从图上可以看出,2ASK中只有零值和最大值两种情况,4ASK有四种不同的幅值,符合ASK调制信号的要求。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1629

    文章

    21736

    浏览量

    603268
  • matlab
    +关注

    关注

    185

    文章

    2974

    浏览量

    230457
  • 无线通信
    +关注

    关注

    58

    文章

    4569

    浏览量

    143530
  • ASK
    ASK
    +关注

    关注

    2

    文章

    75

    浏览量

    45318
  • 调制系统
    +关注

    关注

    0

    文章

    11

    浏览量

    7422
收藏 人收藏

    评论

    相关推荐

    无线信号探测器:如何成为无线通信领域的专家

    深圳放大器|无线信号探测器:如何成为无线通信领域的专家
    的头像 发表于 12-10 09:05 224次阅读

    PLC无线通信模块的工作原理 PLC无线通信模块网络配置

    PLC无线通信模块的工作原理 PLC(可编程逻辑控制器)无线通信模块是一种用于实现工业自动化设备之间无线数据通信的关键组件。它通过无线
    的头像 发表于 11-29 18:07 522次阅读

    GND在无线通信中的应用

    无线通信领域,GND(Ground)或接地是一个至关重要的概念。接地不仅关系到设备的安全性,还直接影响到信号的质量和系统的稳定性。 1. 接地的定义和作用 接地,通常指的是将电路或设备的一部分
    的头像 发表于 11-29 15:59 262次阅读

    电子耦合在无线通信中的应用

    电子耦合在无线通信中发挥着至关重要的作用。电子耦合是利用转移电容、磁耦合或电感耦合等方式将电路信号传递到另一个电路的技术,这种技术在无线通信系统中被广泛应用,以实现信号的传输、处理和接
    的头像 发表于 11-24 09:22 382次阅读

    无线通信频谱分析仪的技术原理和应用场景

    提供的本振信号混合后,将中频信号放大、滤波、检查,将交流信号和各种调制信号转换为有一定规律变化的直流信号
    发表于 11-07 15:13

    无线通信测试平台的技术原理和应用场景

    无线通信测试平台的技术原理和应用场景是无线通信领域的重要组成部分。以下是对这两个方面的详细阐述:一、无线通信测试平台的技术原理无线通信测试平台的技术原理主要基于
    发表于 11-06 14:29

    无线通信为何需要采用调制技术

    无线通信是一种通过无线电波传输信息的技术,它在现代社会中扮演着非常重要的角色。然而,由于无线电波的特性和无线通信系统的需求,无线通信需要采用
    的头像 发表于 08-25 15:58 740次阅读

    模拟无线通信中采用的信号调制方法

    无线通信是现代通信技术的重要组成部分,它通过无线电波将信息从发送端传输到接收端。在无线通信中,信号调制
    的头像 发表于 08-25 15:56 589次阅读

    基于MATLAB通信系统设计

    通信系统设计领域,MATLAB作为一款强大的数学计算与仿真软件,广泛应用于信号处理、通信系统建模与仿真
    的头像 发表于 07-18 15:52 1483次阅读

    如何避免无线通信时的同频干扰?

    同频干扰是指在无线通信系统中,由于两个或多个通信设备使用相同的频率进行通信,导致信号互相干扰的现象。
    的头像 发表于 05-22 15:35 1767次阅读

    基于FPGA VHDL的ASK调制与解调

    ASK即“幅移键控”又称为“振幅键控”,也有称为“开关键控”(通断键控)的,所以又记作OOK信号ASK是一种相对简单的调制方式。
    发表于 04-22 14:44 573次阅读
    基于FPGA VHDL的<b class='flag-5'>ASK</b><b class='flag-5'>调制</b>与解调

    调制技术在通信领域有哪些具体应用?

    调制技术在通信领域有许多具体应用,主要包括以下几个方面: 数字信号调制:在数字通信中,调制技术被
    的头像 发表于 02-29 18:00 1563次阅读

    NBIOT无线通信模块可以传输多远?

    NBIOT无线通信模块可以传输多远? NBIOT是一种低功耗、广域覆盖的无线通信技术,专门用于物联网设备之间的通信。NBIOT无线通信模块的传输距离是受多种因素影响的,包括频率、功率、
    的头像 发表于 02-01 10:52 3634次阅读

    无线通信系统的组成 无线通信系统的工作原理

    送的信息转换成适合无线传输的信号形式。发射器通常包括调制器,它将基带信号调制成高频信号,以便在
    的头像 发表于 01-24 11:24 3258次阅读

    常用的无线通信方法有哪些 无线通信传输介质有哪些

    常用的无线通信方法有以下几种: 无线电通信:利用调制和解调技术,通过无线电波传输信号,如广播电台、无线
    的头像 发表于 01-24 10:43 4640次阅读