0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度解析FPGA时序的进位链

454398 来源: 科学计算 technomania 作者:猫叔 2020-11-16 16:35 次阅读

FPGA中我们写的最大的逻辑是什么?相信对大部分朋友来说应该是计数器,从最初板卡的测试时我们会闪烁LED,到复杂的AXI总线中产生地址或者last等信号,都会用到计数器,使用计数器那必然会用到进位链。

可能很多刚开始接触FPGA的同学没听过进位链,也就是Carry Chain,我们这里再回顾一下。FPGA的三个主要资源为:

1. 最低逻辑单元

可配置逻辑单元(CLB)

存储单元

运算单元(DSP48)

2. 一流的I / O资源

3. 布线资源

其中,CLB在FPGA中最丰富,在7系列的FPGA中,一个CLB中有两个Slice,Slice中包含4个LUT6、3个数据选择器MUX,两个独立进位链(Carry4,Ultrascale是CARRY8)和8个主轴。

首先,我们来看下Carry Chain的结构原理,其输入输出接口如下:

其中,

CI是上一个CARRY4的进位输出,位宽为1;

CYINT是进位的初始化值,位宽为1;

DI是数据的输入(两个加数的任意一个),位宽为4;

SI是两个加数的异或,位宽为4;

O是加法结果输出,位宽为4;

CO是进位输出,位宽为4;(为什么进位输出是4bit?后面有解释)

Carry4的内部结构如下图所示:

这里我们要先解释一下FPGA中利用卡里链(Carry Chain)实现加法的原理,比如两个加数分别为a = 4'b1000和b=4'b1100,其结果应该是8+12=20。

a = 4'b1000;
b = 4'b1100;

S = a ^ b = 4'b0100;
D = b = 4'b1100;          //D取a也可以
CIN = 0;                  //没有上一级的进位输入
CYINIT = 0;               //初始值为0
// 下面为CARRY4的计算过程,具体的算法跟上图中过程一样
S0 = 0;                  //S的第0位
O0 = S0 ^ 0 = 0 ^ 0 = 0;
CO0 = DI0 = 0;            //上图中的MUXCY,S0为0时,选择1,也就是DI0,S0为1是选择2
S1 = 0;
O1 = S1 ^ CO0 = 0 ^ 0 = 0;
CO1 = DI1 = 0;
S2 = 1;
O2 = S2 ^ CO1 = 0 ^ 1 = 1;
CO2 = CO1 = 0;
S3 = 0;
O3 = S3 ^ CO2 = 0 ^ 0 = 0;
CO3 = DI3 = 1;

加法最终的输出结果为:{CO3,O3,O2,O1,O0} = 5'b10100 =20。进位输出在CARRY4的内部也使用到了,因此有4个位的进位输出CO,但输出给下一级的只是CO [3]。

再来看完下面的例子就更清晰了。Example的代码如下:

module top(

 input clk,
 input [7:0] din_a,
 input [7:0] din_b,
 output reg[7:0] dout
    );

 always @ ( posedge clk )
 begin
    dout <= din_a + din_b;
 end  
endmodule

综合之后的电路如下:

在本程序中,加数为din_a和din_b,图中

1 表示CARRY4的进位输出到下一级的进入输入;

2 表示输入的一个加数din_a(换成din_b也是可以的);

3 表示第二级输入的DI端口,因为第二级CARRY是通过第一级的进位输出进行累加,因此该接口为0;

4 表示输入两个加数的异或结果。

可以抛光,当进行两个两个bit的数据进行加法操作时,会使用两个CARRY4级联,那如果是对48位的数据进行相加,那就会用到12个的CARRY4的级联,这样(此处需要注意的是,在Vivado的设置下,如果进行的是12bit以下的数据加1'b1的操作,那么Vivado综合的结果并不会使用CARYY4,或者使用LUT来实现加法器)。

那如何解决这种问题呢?我们可以把加法操作进行拆解,比如拆解成3个16bit的计数器,那这样就会只有4个CARRY4的级联,时序情况就好了很多。

对比程序如下:

module top(

 input clk,
 input [47:0] din1,
 input [47:0] din2,
 output reg[47:0] dout1,
 output    [47:0] dout2
 );

 always @ ( posedge clk )
 begin
    dout1 <= din1 + 1'b1;
 end  

 genvar i;
 generate
 for(i = 0;i < 3;i=i+1) begin:LOOP
    wire carry_co;
    reg [15:0] carry_o=0;
    wire ci;
    if(i==0)  begin
        always @ ( posedge clk )
         begin
            carry_o <= din2[i*16+:16] + 1'b1;
         end
     end //if
     else begin
        always @ (posedge clk) begin
            if(LOOP[i-1].carry_co == 1)
                carry_o <= carry_o + 1'b1;
        end
     end //else
    assign LOOP[i].carry_co = (LOOP[i].carry_o==16'hffff)?1'b1:1'b0;
    assign dout2[i*16+:16] = LOOP[i].carry_o;

 end //for

 endgenerate

endmodule

:综合后的schematic后可以发现,在dout2的输出中,每4个CARRY4后都会有一级的触发,这样时序就会好很多,但造成的代价是LUT会增加。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1629

    文章

    21750

    浏览量

    604102
  • 计数器
    +关注

    关注

    32

    文章

    2256

    浏览量

    94682
收藏 人收藏

    评论

    相关推荐

    FPGA驱动AD芯片之实现与芯片通信

    概述: 利用FPGA实现AD芯片的时序,进一步实现与AD芯片数据的交互,主要熟悉FPGA时序图的实现,掌握时序图转换Verilog硬件描述
    的头像 发表于 12-17 15:27 286次阅读
    <b class='flag-5'>FPGA</b>驱动AD芯片之实现与芯片通信

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPGA
    的头像 发表于 10-25 09:22 254次阅读

    高速ADC与FPGA的LVDS数据接口中避免时序误差的设计考虑

    电子发烧友网站提供《高速ADC与FPGA的LVDS数据接口中避免时序误差的设计考虑.pdf》资料免费下载
    发表于 10-15 09:50 5次下载
    高速ADC与<b class='flag-5'>FPGA</b>的LVDS数据接口中避免<b class='flag-5'>时序</b>误差的设计考虑

    FPGA深度学习能走多远?

    ,共同进步。 欢迎加入FPGA技术微信交流群14群! 交流问题(一) Q:FPGA深度学习能走多远?现在用FPGA深度学习加速成为一个热
    发表于 09-27 20:53

    BQ79606A-Q1菊花通信时序

    电子发烧友网站提供《BQ79606A-Q1菊花通信时序.pdf》资料免费下载
    发表于 09-26 11:41 1次下载
    BQ79606A-Q1菊花<b class='flag-5'>链</b>通信<b class='flag-5'>时序</b>

    FPGA电源时序控制

    电子发烧友网站提供《FPGA电源时序控制.pdf》资料免费下载
    发表于 08-26 09:25 0次下载
    <b class='flag-5'>FPGA</b>电源<b class='flag-5'>时序</b>控制

    深度解析FPGA中的时序约束

    建立时间和保持时间是FPGA时序约束中两个最基本的概念,同样在芯片电路时序分析中也存在。
    的头像 发表于 08-06 11:40 720次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>解析</b><b class='flag-5'>FPGA</b>中的<b class='flag-5'>时序</b>约束

    温度补偿振荡器TG-3541CE的深度解析

    温度补偿振荡器TG-3541CE的深度解析
    的头像 发表于 07-18 17:48 335次阅读

    FPGA时序课件下载

    方便FPGA爱好者学习
    发表于 07-12 11:45 2次下载

    FPGA 高级设计:时序分析和收敛

    今天给大侠带来FPGA 高级设计:时序分析和收敛,话不多说,上货。 这里超链接一篇之前的STA的文章,仅供各位大侠参考。 FPGA STA(静态时序分析) 什么是静态
    发表于 06-17 17:07

    加法进位的手动约束

    在激光雷达中,使用FPGA实现TDC时需要手动约束进位的位置。这里简单记录下。 在outflow下会生成一个.qplace文件 。用于指示布线的各个原语资源的分布位置 。 它的内容主是 是原语
    的头像 发表于 05-20 11:38 1324次阅读
    加法<b class='flag-5'>进位</b><b class='flag-5'>链</b>的手动约束

    FPGA工程的时序约束实践案例

    详细的原时钟时序、数据路径时序、目标时钟时序的各延迟数据如下图所示。值得注意的是数据路径信息,其中包括Tco延迟和布线延迟,各级累加之后得到总的延迟时间。
    发表于 04-29 10:39 807次阅读
    <b class='flag-5'>FPGA</b>工程的<b class='flag-5'>时序</b>约束实践案例

    深入理解 FPGA 的基础结构

    FPGA 的两个最基本的部分是组合逻辑以及时序逻辑,分别实现这两个基本部分的结构就是 FPGA 的基本单元。组合逻辑部分一般采用查找表(Look-Up-Table,LUT)的形式,时序
    发表于 04-03 17:39

    FPGA深度学习应用中或将取代GPU

    现场可编程门阵列 (FPGA) 解决了 GPU 在运行深度学习模型时面临的许多问题 在过去的十年里,人工智能的再一次兴起使显卡行业受益匪浅。英伟达 (Nvidia) 和 AMD 等公司的股价也大幅
    发表于 03-21 15:19

    fpga时序仿真和功能仿真的区别

    FPGA时序仿真和功能仿真在芯片设计和验证过程中各自扮演着不可或缺的角色,它们之间存在明显的区别。
    的头像 发表于 03-15 15:28 2324次阅读