0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

全可编程异构多处理SoC——Zynq UltraScale+MPSoC详细评测

电子设计 来源:米尔科技 作者:米尔科技 2020-11-30 10:15 次阅读

随着5G通信自动驾驶物联网等新兴应用的发展,图像处理、AI算法加速、软件无线电等复杂多任务设计越来越挑战嵌入式平台的处理能力。专用标准产品只能为设计人员提供无法扩展的固定解决方案。这样,为了让设计更灵活就必须添加相应器件,因而不可避免地会拉高BOM成本和功耗成本。Xilinx的ZYNQ-7000 SoC系列作为ARMFPGA全可编程的SOC,以其灵活的设计方式和优异的性能功耗比,为人所熟知,但是和今天我们要介绍的这款SOC平台相比,ZYNQ-7000简直弱爆了。它就是赛灵思推出的真正 All Programmable (全可编程)异构多处理 SoC——Zynq UltraScale+MPSoC。

米尔科技推出的MYD-CZU3EG开发套件搭载的就是UltraScale+ MPSoC平台器件 — XCZU3EG,它集成了四核Cortex™-A53 处理器,双核 Cortex™-R5 实时处理单元以及Mali-400 MP2 图形处理单元及 16nm FinFET+ 可编程逻辑相结合的异构处理系统,具有高性能,低功耗,高扩展等特性,除了这款异构SOC之外,板子还搭载了丰富的接口和完善的开发资料,可以帮助开发人员降低产品开发周期,实现产品快速上市,下面我们来一探究竟。

开箱

暖色调的简洁外包装上印有一行“Make Your idea Real”,不免给人一种立马开箱动手躁起来的冲动。

开箱之后就是摆放在内衬中的板卡和配套设备。除了板卡之外,配套的电源、数据线、SD卡和光盘等等,可谓考虑齐全。


板卡资源介绍
笔者迫不及待的拆开板卡的防静电袋,下面来看一下这块性能小怪兽的样子。MYD-CZU3EG 开发板由MYC-CZU3EG 核心板加MYB-CZU3EG 底板组成。散热器下面是核心板,这是一个CPU最小系统模块,集成了主处理器和存储。底板是一块外设接口板,集成了电源和多种接口,方便评估或集成。

下面我们详细的了解一下板卡详细的组成结构,首先,核心板基于Xilinx XCZU3EG全可编程处理器,4核Cortex-A53(Up to 1.5GHZ)+FPGA(154K LE),具体型号:XCZU3EG-1SFVC784,(未来可选配XCZU2CG, XCZU3CG,XCZU4EV,XCZU5EV),性能强大;板载4GB DDR4 SDRAM(64bit,2400MHZ) 及丰富的存储资源,从容应对复杂运算;板载千兆以太网PHY 和USB PHY , 轻松实现高速互联,如此奢华的配置,板子尺寸只有62*50mm,紧凑程度令人赞叹。

另外,板子选材和用料讲究,据称使用了Intel电源模块松下的M6 PCB板材,Micron存储,村田电容,还是非常良心的。

底板的外设接口丰富,板载了串口,网口,HDMI,DP,SATA,PCIE,USB3.0 Type-C,LCD,PMOD,Arduino,FMC-LPCTF 卡接口,SFPADCCAN等多种接口,方便用户评估或集成。这些接口根据SOC的结构,有的接在PS端,有的接在PL端。

PS 单元:
1 路千兆以太网
1 路USB3.0 typeC 接口
1 路DisplayPort 接口
1 路PCIE2.1 x1 接口
1 路SATA3.1 接口
1 路CAN 接口
1 路RS232 串口
1 路TF 卡接口
1 路I2C 接口
1 个复位按键,2 个用户按键,
1 路JTAG
内置实时时钟

PL 单元:
XADC 接口
1 路Xilinx 标准LPFMC 接口
1 路HDMI 接口,RGB 24bit,不支持音频
1 路LCD DIP/LPC 接口,RGB 24bit,与HDMI 复用显示信号
电阻式电容式触摸屏接口,集成在LCD 触摸屏接口
2 路PMoD
5 个电源指示灯
4 路SFP 模块接口
1 路Arduino 接口

除了板卡之外,套件内的光盘提供了包括用户手册,使用示例、PDF底板原理图,外扩接口驱动,BSP 源码包,开发工具等,为开发者提供了完善的软件开发环境,帮助降低产品开发周期,实现产品快速上市。


不过现在的笔记本电脑已经很少带光驱了,拷出这些资料也着实废了笔者一番功夫,建议厂商换成U盘来装资料,会更方便一些。

Zynq UltraScale+ MPSoC介绍

1.真正的全可编程异构多处理SOC
在使用板子之前,我们先来了解一下这款板卡的核心芯片——XCZU3EG,这是Xilinx继ZYNQ-7000系列之后推出的真正的全可编程异构平台,Zynq® UltraScale+ MPSoC 器件不仅提供 64 位处理器可扩展性,同时还将实时控制与软硬件引擎相结合,支持图形、视频、波形与数据包处理。置于包含通用实时处理器和可编程逻辑的平台上,三个不同变体包括双应用处理器 (CG) 器件、四核应用处理器和 GPU (EG) 器件、以及视频编解码器 (EV) 器件, 为 5G 无线、下一代 ADAS 和工业物联网创造了无限可能性。

MYD-CZU3EG开发套件目前搭载的是EG器件,后期还可以选配CG或EV器件。EG 器件采用运行速率高达 1.5GHz 的四核 ARM® Cortex-A53 平台与双核 Cortex-R5 实时处理器、Mali-400 MP2 图形处理单元及 16nm FinFET+ 可编程逻辑相结合。

该器件有着无与伦比的集成度、高性能和低功耗特点,与 Zynq-7000 SoC 相比,系统级性能功耗比提升5 倍,为交付最低系统功耗而精心设计,官方给出的典型应用包括基带 L1 加速、公共安全与移动无线电和8x8 100 MHz TD-LTE 远端射频单元等场景。

2. 多媒体的理想系统
说到应用,不得不提Zynq UltraScale+ MPSoC最最擅长的领域——面向视频编解码器和图形引擎的前沿多媒体解决方案。赛灵思SoC为多媒体解决方案提供了多种支持,包括:

集成型视频编解码器单元 (VCU)
集成型图形处理单元 (GPU)
含集成式 DisplayPort 接口模块
集成型可编程逻辑 (PL)
EV 器件带有集成型 GPU 和H.264 / H.265视频编解码器,专为超高清 (UHD) 视频而设计带有集成型 H.264 / H.265 视频编解码器,能够同时编解码达 4Kx2K (60fps) 的视频,可实现单芯片4K视频处理,当然MYD-CZU3EG开发板使用的是EG器件,没有视频编解码器,但是有Mali-400 MP2 GPU。

Mali-400 MP2 GPU与 APU 直接绑定,还可在帧缓存中加速视频图形渲染,从而实现显示器输出。GPU 可通过独立的并行引擎进行像素渲染,速度远高于依靠 CPU 来处理图形,而且与需要设计人员添加片外 GPU 引擎的解决方案相比,成本与功耗均更低。GPU 通过全面可编程的架构加速 2D 和 3D 图形,该架构既支持基于着色器的图形 API ,也支持固定功能图形 API 。GPU 具有抗锯齿功能,能实现最佳图像质量,且几乎不会造成额外的性能损耗。Xilinx配套提供经实践检验的全套 Linux 驱动程序,能自动将图形命令从 APU 转到 CPU 处理。

另外,Zynq UltraScale+ MPSoC 提供高速互联外设,后者包含集成式 DisplayPort 接口模块。DisplayPort接口位于 PS 端,可多路复用至四个专用高速串行收发器中的两个,工作速率高达 6 Gb/s。该架构摆脱了对于额外显示芯片的需求,进一步降低了系统 BOM 成本。

DisplayPort 接口基于 VESA DisplayPort Standard Version 1 和 Revision 2a 开发,其提供的多个接口能处理来自 PS 或 PL 的实时音视频流,也能存储来自存储器帧缓存的音视频。它同时支持两个音视频流水线,支持 alpha 混合、chroma 复采样、色彩空间转换和音频混合等功能的动态渲染。DisplayPort 既可使用一个 PS PLL,也能使用 PL 的时钟生成像素时钟。

除视频编解码器和图形处理之外,多媒体应用还需要其他重要组件,如视频数据的输入输出管理 , 以及处理高速视频数据的功能。在 PL 内可设计定制化逻辑,用于捕获来自直播源的视频。例如,SDI RX、HDMI RX、MIPI CSI IP 等协议均可用于捕获不同来源的原始视频。视觉算法可用于采集来自原始数据的重要信息,如路标识别和针对驾驶员辅助技术的动作检测、视频监控面部识别、高级拍摄应用的物体与动作识别等。除收集数据外,算法还可用于音视频广播和视频会议等用例中处理与操控原始数据。考虑到今后几年视频分辨率不可避免的攀升态势,有关算法需要具备极高的工作速度。PL 为此类算法提供了所需的硬件加速功能,便于大幅提高性能,满足下一代技术需求。

Zynq UltraScale+ MPSoC 的灵活性能加速计算密集型应用程序,在 GPU、CPU 和 PL 之间共享工作负载,在 PL 中可卸载复杂的算数计算以实现硬件加速,并且在 APU 上可预先计算 OpenGL 着色语言 (GLSL) 一致变量。GPU 着色器核心上的计算仅适用于顶点和片断之间不同的值。整批顶点中所有保持常量的值在 CPU 上处理最为有效。

3. 无与伦比的系统性能功耗比
Zynq UltraScale+ MPSoC 在设计之初就考虑了高效电源管理问题,该器件被分为四个电源域:

处理系统 (PS) 中的电池电源域包含实时时钟和电池供电的 RAM。
PS 中的低电源域包含 RPU、通用外设、片上存储器 (OCM)、平台管理单元,以及配置安全单元。
PS 中的全电源域包含 APU、高速外设、系统存储器管理器和 DDR 控制器
可编程逻辑 (PL) 位于自身的电源域中

Zynq UltraScale+ MPSoC 含有可控制电源域的创新型平台管理单元 (PMU),。PMU 负责器件的安全管理,并监管电源域内的电源。不用的电源域可在启动时关闭,然后智能地通过中断或事件唤醒,实现精细的电源管理。

我们已经知道Zynq UltraScale+ MPSoC 内部分了多个处理核心,四核ARM Cortex-A53是应用处理单元,具有高效的基线性能,适合Linux应用处理;双核 ARM Cortex-R5是实时处理单元理想适用于低时延确定性应用,诸如安全模块和 APU 任务分担等,另外图形引擎,高速外设等针对特定应用做了优化,各个模块各司其职,系统性能明显提升。该器件采用了台积电 (TSMC) 的 16nm FinFET 工艺节点,。该工艺节点采用更高效的晶体管实现方案,具备最佳的开关速度以及比平面工艺更低的漏电流,因此能实现更高性能和更低功耗。从 28nm 的 Zynq-7000 到 16nm 的 Zynq UltraScale+ MPSoC,性能提升了 60%,功耗降低 20%,使原始处理器性能提升 2.7 倍。

示例
板子QSPI闪存预先烧录了Linux镜像,默认也是从QSPI闪存启动的,使用数据线连接板子串口和PC,连接电源,板子上电,打开putty,可以看到系统启动信息。通过命令行可以登录,默认密码是root。

光盘中也提供了系统的镜像文件,用户如果不熟悉Linux系统编译,可以直接使用。

另外,MYD-CZU3EG 光盘中提供了常用外设的演示程序,例如:

使用Linux API 操作开发板上的LED
使用Linux API 操作开发板上的按键
使用Linux API 操作开发板上的CAN
使用Linux API 进行网络通讯
程序以及源码都位于“/Examples/”,用户可以根据目录内的Makefile 进行编译。

这里我们使用Xilinx Vivado新建一个HelloWorld工程,生成启动镜像,从TF卡启动。整个过程分为:

生成开发板的硬件平台
将硬件平台导出到SDK
创建一个“HelloWorld”工程
产生Boot Loader(fsbl)
生成SD 卡启动映像,从microSD启动

以下是笔者实际操作的流程:
(1) 新建vivado工程

创建一个RTL工程,选择开发板芯片为 xczu3eg-sfvc784-1-e。

(2)创建Block Design,添加并配置PS 的IP核

单击 IP Integrator->Create Block Design 新建一个 Block Design,点击Add IP,

添加Zynq UltraScale+MPSoC IP核

双击zynq mpsoc 核导入配置文件Presets‐‐>Apply Configuration

厂家在光盘资料中提供了示例预配置文件,导入hello_world.tcl 配置文件,然后点击OK。
(3)生成综合文件

右击 design_1‐>Generate Ouput Products‐>Generate

(4)生成FPGA顶层文件

(5)生成bitstream

(6)导出硬件配置文件

点击菜单栏上的 File‐>Export‐>Export Hardware‐>OK 导出硬件配置文件

(7)启动SDK,新建fsbl

点击菜单栏上的 File‐>Launch SDK‐>OK 启动 SDK

在Xilinx SDK软件中,点击File‐‐>Application Project 新建工程,输入工程名为fsbl,选择Zynq MP FSBL,点击Finish。

(8)新建一个helloworld工程

在Xilinx SDK中点击File‐‐>Application Project 新建工程,输入工程名为hello_world,选择Board Support Package为上一步中生成的fsbl_bsp,选择hello_world 模板,点击Finish。


(9)生成boot image

右击 hello_world ‐‐>Create boot Image,点击Create Image,生成BOOT.bin 启动文件

将开发板的启动模式switch 开关SW1 的1 拨到OFF,2 拨到ON,3 拨到OFF,

4 拨到ON,设置成TF 卡启动模式,

然后将这个BOOT.bin 文件拷贝到SD 卡,板子接入电源,串口连接电脑,打开电源开关,开发板上运行。电脑端连接microUSB线,打开putty,可以板子上电运行在终端打印字符“”“Hello World”


总结
作为国内首款Zynq UltraScale+ MPSoC平台开发板,MYD-CZU3EG核心板性能配置强大且设计紧凑可靠,外设底板接口资源丰富,厂家为开发者提供的软件开发环境也比较完善,非常适合人工智能工业控制,嵌入式视觉,ADAS,算法加速,云计算,有线/无线通信等应用领域做原型开发。

编辑:hfy


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • soc
    soc
    +关注

    关注

    38

    文章

    4118

    浏览量

    217932
  • 可编程
    +关注

    关注

    2

    文章

    844

    浏览量

    39781
  • 异构多处理器

    关注

    0

    文章

    4

    浏览量

    9662
  • Zynq
    +关注

    关注

    9

    文章

    608

    浏览量

    47125
收藏 人收藏

    评论

    相关推荐

    AMD/Xilinx Zynq® UltraScale+ ™ MPSoC ZCU102 评估套件

    Zynq UltraScale+ MPSoC 器件,具有四核 Arm® Cortex-A53、双核 Cortex-R5 实时处理器和基于 AMD/Xilinx 16nm FinFET
    的头像 发表于 11-20 15:32 144次阅读
    AMD/Xilinx <b class='flag-5'>Zynq</b>® <b class='flag-5'>UltraScale</b>+ ™ <b class='flag-5'>MPSoC</b> ZCU102 评估套件

    基于PYNQ和机器学习探索MPSOC笔记

    ,同样也是希望熟悉器件及其相关设计方法的技术人员的有效参考资料。前  言Zynq MPSoC多处理器片上系统)是Xilinx公司推出的第二代SoC系列产品,集成了复杂
    的头像 发表于 11-16 11:32 175次阅读
    基于PYNQ和机器学习探索<b class='flag-5'>MPSOC</b>笔记

    在米尔电子MPSOC实现12G SDI视频采集H.265压缩SGMII万兆以太网推流

    4K UHD音视频广播领域的优势 1.高性能与低功耗的结合:Zynq UltraScale+ MPSoC采用了16nm FinFET工艺,集成了多核处理器和
    发表于 11-01 16:56

    在米尔电子MPSOC实现12G SDI视频采集H.265压缩SGMII万兆以太网推流

    协议。 3.MPSoC与VCU架构在4K UHD音视频广播领域的优势 高性能与低功耗的结合 :Zynq UltraScale+ MPSoC采用了16nm FinFET工艺,集成了多核
    发表于 10-14 17:42

    为Xilinx® Zynq®UltraScale™系列多处理器中的VCCINT_VCU轨供电

    电子发烧友网站提供《为Xilinx® Zynq®UltraScale™系列多处理器中的VCCINT_VCU轨供电.pdf》资料免费下载
    发表于 09-25 10:54 0次下载
    为Xilinx® <b class='flag-5'>Zynq</b>®<b class='flag-5'>UltraScale</b>™系列<b class='flag-5'>多处理</b>器中的VCCINT_VCU轨供电

    使用TPS65086x PMIC为Xilinx Zynq UltraScale MPSoC供电

    电子发烧友网站提供《使用TPS65086x PMIC为Xilinx Zynq UltraScale MPSoC供电.pdf》资料免费下载
    发表于 09-21 11:11 0次下载
    使用TPS65086x PMIC为Xilinx <b class='flag-5'>Zynq</b> <b class='flag-5'>UltraScale</b> <b class='flag-5'>MPSoC</b>供电

    可编程晶振都有什么频率的呢?分享3个挑选可编程晶振的技巧

    频率范围全面覆盖,满足多样化需求: • CMOS可编程晶振:1~200MHz宽广选择,为您的基础应用提供稳定可靠的支持。 • 可编程差分晶振:高达2100MHz的卓越性能,满足高速数据传输与信号处理的高标准要求。 •
    的头像 发表于 07-18 18:30 1077次阅读
    <b class='flag-5'>可编程</b>晶振都有什么频率的呢?分享3个挑选<b class='flag-5'>可编程</b>晶振的技巧

    可编程电源使用方法

    可编程电源使用方法 可编程电源使用方法 摘要:本文详细介绍了可编程电源的使用方法,包括其基本概念、主要功能、选择原则、操作步骤、注意事项以及实际应用案例,旨在帮助读者全面了解
    的头像 发表于 06-10 15:29 899次阅读

    可编程电源如何编程

    可编程电源如何编程  可编程电源是一种可以调节输出电压和电流的电源设备,广泛应用于电子设备测试、研发和生产等领域。通过编程,用户可以根据需要设置电源的输出参数,实现自动化测试和控制。本
    的头像 发表于 06-10 15:24 1203次阅读

    一个更适合工程师和研究僧的FPGA提升课程

    Suite 1 设计 FPGA; 嵌入式设计课程 02 ● 设计 Zynq UltraScale+ RFSoC; ● 面向软件开发者的Zynq UltraScale+MPSo
    发表于 06-05 10:09

    什么是现场可编程逻辑阵列?它有哪些特点和应用?

    可编程逻辑元件和可编程互连,实现逻辑电路的设计和配置。FPLA在电子系统设计、数字信号处理、网络通信等多个领域都有广泛应用。本文将对现场可编程逻辑阵列进行
    的头像 发表于 05-23 16:25 807次阅读

    简谈Xilinx Zynq-7000嵌入式系统设计与实现

    系统性能的瓶颈时,设计人员可以选可编程SoC内使用硬件逻辑定制协处理器引擎来高效的实现该算法,这个使用硬件逻辑实现的协处理器,可以通过AM
    发表于 05-08 16:23

    简谈Xilinx Zynq-7000嵌入式系统设计与实现

    定制协处理器引擎来高效的实现该算法,这个使用硬件逻辑实现的协处理器,可以通过AMBA接口与可编程SoC内的ARM Cortex A9嵌入式
    发表于 04-10 16:00

    国产可编程硅振荡器用于商业烤箱,兼容SiTime

    国产可编程硅振荡器用于商业烤箱,兼容SiTime
    的头像 发表于 04-08 09:41 6624次阅读
    国产<b class='flag-5'>可编程</b><b class='flag-5'>全</b>硅振荡器用于商业烤箱,兼容SiTime

    可编程控制器的组成 可编程控制器有哪些特点?

    可编程控制器(Programmable Logic Controller,PLC)是一种使用数字计算机技术和专用外设实现工业过程自动化控制的设备。它在工业生产中起到了非常重要的作用。本文将详细介绍
    的头像 发表于 01-18 11:18 1413次阅读