0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于AXI总线的加法器模块解决方案

454398 来源:csdn 作者:ChuanjieZhu 2020-12-23 15:32 次阅读

前面一节我们学会了创建基于AXI总线的IP,但是对于AXI协议各信号的时序还不太了解。这个实验就是通过SDK和Vivado联合调试观察AXI总线的信号。由于我们创建的接口是基于AXI_Lite协议的,所以我们实际观察到是AXI_Lite协议的信号时序。

具体做法是创建一个基于AXI总线的加法器模块,在Vivado里将AXI总线添加到debug信号里,实际上是用逻辑分析仪探测信号,在SDK端通过debug方式依次写入两个加数,由PL计算出和,我们读出这个和打印到串口,这样AXI总线的读和写就都能观察到了。

板子使用的是zc702。

在观察信号之前我们有必要简单了解AXI是个什么:

AXI总线是一种高性能、高带宽、低延迟的片内总线,AXI协议描述了主从设备数据传输的方式。主设备和从设备通过握手信号建立连接,握手信号包括主机发送的VALID信号,表示数据有效,从机发送的READY信号,表示从机准备好了接收数据。当VALID和READY都有效的时候传输开始。

Zynq使用的是AXI协议的4.0版本,由AMBA3.0协议发展而来:

AXI的三种总线各有各的用途:
AXI4支持突发数据传输,主要用于CPU访问存储等需要高速数据交互的场合,相当于原来的AHB协议;

AXI_Lite一次传输单个数据,主要用于访问一些低速外设,相当于原来的APB;

AXI_Stream数据传输不需要地址,主设备直接连续读写数据,主要用于高速流数据的传输,使用起来类似FIFO。

AXI4总线和AXI4-Lite总线具有相同的组成部分:
(1) 读地址通道, 包含ARVALID, ARADDR, ARREADY信号;
(2) 读数据通道, 包含RVALID, RDATA, RREADY, RRESP信号;
(3) 写地址通道, 包含AWVALID, AWADDR, AWREADY信号;
(4) 写数据通道, 包含WVALID, WDATA, WSTRB, WREADY信号;
(5) 写应答通道, 包含BVALID, BRESP, BREADY信号;
(6) 系统通道, 包含: ACLK, ARESETN信号。

帮助记忆:
读地址信号都是以AR开头(A: address; R: read)
写地址信号都是以AW开头(A: address; W: write
读数据信号都是以R开头(R: read)
写数据信号都是以W开头(W: write)
应答信号都是以B开头(B: back(answer back))

读时序:

写时序:

5个通道都有自己独立的握手机制,同时又相互协作,地址线分离后,读/写可以并行交互数据。而且AXI支持地址pipeline、错位传输等模式,大大提高了数据通路的利用率。

关于AXI Interconnect模块:

AXI协议可以描述为主/从设备之间的点对点传输,可以有多个主机,也可以有多个从机,这是进行数据交互时,需要一个管理中心确保信号发到对应的设备,AXI Interconnect模块就是这样一个管理中心,也叫做AXI互联矩阵。它类似于一个交换机,保证每个外设独享带宽,完成数据传输。Xilinx公司为我们提供了AXI Interconnect的IP核。

介绍到此,理论部分已经掌握i一二了,下面就开始实际观察AXI的信号。

创建一个基于AXI_Lite总线的加法器IP

新建Vivado工程,依然,选择这个:

修改名字和地址,我命名为AXI_Add,地址最好选择工程路径下新建一个文件夹,这样就会自动把你创建的IP更新到IP库里,其他默认,最后选择Edit IP,在Vivado给出的代码里添加上我们的加法器功能:

注意这些代码就是定义AXI协议的工作方式的,里面有注释,可以去研究一下!

添加用户端口

这里我们没有要输出的信号

添加用户逻辑:

待会我们将两个加数写到寄存器0和1中,从寄存器2中读出和

封装好后回到我们之前建的工程,

然后在工程里添加zynq核,添加刚才创建的IP,点击自动连接,然后选中AXI总线,右击选择Make Debug,出现两个绿色的小瓢虫,将总线加入Debug模式下。

如果你没有把刚才新建的IP放在该工程目录下,先要把IP添加进库里,选择 Project Settings-->IP。点击绿色的加号,选择到你的用户IP地址 :

o4YBAF9uHVuAKzGUAAERMik5j6o056.png

整个系统搭建完成是这样的:

o4YBAF9uHV2AYd7qAAE-BadJ_Jo854.png

下面就是例行操作,自动排版,检查,保存,复位,generate,产生顶层文件。然后先综合(Synthesis)一下,综合好后,打开Synthesis Design下的Set Up Debug,将显示为红色的无用信号删除(选中,点击红色的减号),

pIYBAF9uHV-AcXdgAAE7sED2oA0079.png

设置采样深度为1024,

pIYBAF9uHWGAeR9UAACy9TN9Ses728.png

其他默认,然后生成比特流文件。

软件端的设计

Lanch到SDK,新建一个空的applicaton工程,添加一个c源文件,我们在xparameters.h文件中找到我们添加的加法器AXI_ADD的寄存器首地址,待会我们就是要通过地址对寄存器进行读、写:

o4YBAF9uHWKAKgUsAAA5SEoCAqE167.png

这个案例里我们计算16进制下的24+12=36,为了方便SDK端的断点调试,加了while循环,注释我写在后面了:
#include
#include "xparameters.h"
#include "xil_io.h"
#include "xil_types.h"

#define AXI_ADD_REG0 0 //寄存器0的偏移地址为0
#define AXI_ADD_REG1 4 //寄存器1的偏移地址为4
#define AXI_ADD_REG2 8 //寄存器2的偏移地址为8

int main(){
while(1){
u8 value = 0;
Xil_Out32(XPAR_AXI_ADD_V1_0_0_BASEADDR+AXI_ADD_REG0,0x24); //向寄存器0写入第一个加数
Xil_Out32(XPAR_AXI_ADD_V1_0_0_BASEADDR+AXI_ADD_REG1,0x12); //向寄存器1写入第二个加数
value = Xil_In32(XPAR_AXI_ADD_V1_0_0_BASEADDR+AXI_ADD_REG2); //从寄存器3中读出和
xil_printf("value = %x",value);
}
return 0;
}

软硬件联合调试

右键工程 Debug as-->Debug Configrations:

o4YBAF9uHWSAfTZBAAGCKJa-qMc835.png

进入Debug界面后,在AXI总线读、写的地方添加断点:

pIYBAF9uHWWAIGKeAABjsTwjDOo466.png

打开串口:

o4YBAF9uHWaALYTqAAAqc7VvEWA553.png

然后回到Vivado界面,连接到Device,就会自动打开调试界面:

pIYBAF9uHWiAfPy4AAAh6f1uUoo531.png

接下来是设置触发位置,添加触发条件:

pIYBAF9uHWyAAhkSAAPUyQ7qy9M583.png

我们的采样深度是默认的1024,在500的位置触发,

o4YBAF9uHW2AB6T8AAA2OzZygUQ657.png

触发条件设置成WVALID信号为高时,AWVALID信号为高时:

o4YBAF9uHW6AW4yzAAAglAGFcak232.png

右键逻辑分析仪,选中Enable Auto Re-trigger,设置成自动进入下一次触发:

pIYBAF9uHXCAJuKNAAA4G07uVOk626.png

点击运行触发,点击完之后ila进入等待触发状态:

o4YBAF9uHXGAMdK8AAAjE1P5AGU250.png

在SDK点击运行:

o4YBAF9uHXKAZvWtAAASvJazISE412.png

首先写入24:

o4YBAF9uHXOALypYAAB4b4le6c0775.png

有一点要注意,这里的写地址VALID和READY信号是下一个地址的,这里就是对应WDATA的4,而对应地址0,也就是我们观察的数据24地址的VALID和READY信号在前面已经有效过了,我们设置写数据有效时触发,而地址有效在前面就没有捕捉到了。

然后写入12:

o4YBAF9uHXWAV9zvAABvgy2gevk355.png

然后串口打印出36:

o4YBAF9uHXaAJetQAAAsPQEvdL0814.png

等到第二轮写入的时候,我们看到读数据通道上出现36:

o4YBAF9uHXiASy5VAACvGhEih8A502.png

我们可以换一下触发信号,换成读VALID,读READY拉高时触发:

o4YBAF9uHXmAdFrqAAAd3B854Qs447.png

就可以看到,读VALID和READY信号都高时,读出36,读地址线上是8:

o4YBAF9uHXqAPaKWAABsbdOmD-Q617.png

这里可以看到读READY信号一直为高,读VALID信号拉高时36读入。但是由于ILA捕捉的是触发时刻信号,所以它将读有效之前的读数据都显示为36了。

大家要注意,触发设置里,添加的信号默认是AND的,如果你一开始就把读有效为高,写有效为高都添加到触发列表里,会观察不到信号,因为这两个信号在本例子;里不会同时出现:

pIYBAF9uHXuAd47UAAA5hgdI940792.png

我们可以添加读VALID为1,写VALID为1,然后选择OR

pIYBAF9uHXyAZvdJAAAfE9IatCc783.png

SDK那边一步步Debug,先是写入24:

o4YBAF9uHX6AQ-lCAABpBPw3INo271.png

然后写入12:

o4YBAF9uHX-AA59IAABouem-CtE971.png

然后读到36:

pIYBAF9uHYCADlyoAABxDYm_1M8711.png

这里也是由于RREADY先于RVALID信号拉高,ILA捕捉不到READY是什么高的,就把之前都显示为高。

如果没有按你设置的运行,可以在SDK重新Debug as或者在Vivado重新连接一下Target,或者多点几次Run Trigger,这软件有时候不灵敏,比如说你虽然设置了自动进入下一次触发,但是它不一定就进入,这是手动点一下触发,进入等待模式,再点击下一次Debug。

小结

到这里,AXI信号读写时序就全部观察完了,这时候可以再去看一看AXI协议的理论部分,把封装基于AX总线的IP时生成的例化代码捋一遍,就能更好的理解AXI总线的工作原理了。提一句,我们目前观察的都是简化版的AXI_Lite协议的时序。
编辑:hfy


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 加法器
    +关注

    关注

    6

    文章

    183

    浏览量

    30161
  • AXI
    AXI
    +关注

    关注

    1

    文章

    128

    浏览量

    16654
  • Vivado
    +关注

    关注

    19

    文章

    813

    浏览量

    66683
收藏 人收藏

    评论

    相关推荐

    运算放大器的同相加法器和反相加法器

      运算放大器构成加法器 可以分为同相加法器和反相加法器
    发表于 08-05 17:17 3.2w次阅读
    运算放大器的同相<b class='flag-5'>加法器</b>和反相<b class='flag-5'>加法器</b>

    加法器

    请问下大家,,进位选择加法器和进位跳跃加法器的区别是啥啊?我用Verilog实现16位他们的加法器有什么样的不同啊?还请知道的大神告诉我一下。。
    发表于 10-20 20:23

    什么是加法器加法器的原理是什么 ?

    什么是加法器加法器的原理是什么 反相加法器等效原理图解析
    发表于 03-11 06:30

    加法器,加法器是什么意思

    加法器,加法器是什么意思 加法器 :  加法器是为了实现加法的。  即是产生数的和的装置。加数和被加数为输入,和数与
    发表于 03-08 16:48 5576次阅读

    十进制加法器,十进制加法器工作原理是什么?

    十进制加法器,十进制加法器工作原理是什么?   十进制加法器可由BCD码(二-十进制码)来设计,它可以在二进制加法器的基础上加上适当的“校正”逻辑来实现,该校正逻
    发表于 04-13 10:58 1.4w次阅读

    FPU加法器的设计与实现

    浮点运算器的核心运算部件是浮点加法器,它是实现浮点指令各种运算的基础,其设计优化对于提高浮点运算的速度和精度相当关键。文章从浮点加法器算法和电路实现的角度给出设计
    发表于 07-06 15:05 47次下载
    FPU<b class='flag-5'>加法器</b>的设计与实现

    8位加法器和减法器设计实习报告

    8位加法器和减法器设计实习报告
    发表于 09-04 14:53 134次下载

    同相加法器电路原理与同相加法器计算

    同相加法器输入阻抗高,输出阻抗低 反相加法器输入阻抗低,输出阻抗高.加法器是一种数位电路,其可进行数字的加法计算。当选用同相加法器时,如A输
    发表于 09-13 17:23 5.8w次阅读
    同相<b class='flag-5'>加法器</b>电路原理与同相<b class='flag-5'>加法器</b>计算

    基于Skewtolerant Domino的新型高速加法器

    基于Skewtolerant Domino的新型高速加法器
    发表于 01-22 20:29 8次下载

    加法器设计代码参考

    介绍各种加法器的Verilog代码和testbench。
    发表于 05-31 09:23 19次下载

    加法器的原理及采用加法器的原因

    有关加法器的知识,加法器是用来做什么的,故名思义,加法器是为了实现加法的,它是一种产生数的和的装置,那么加法器的工作原理是什么,为什么要采用
    的头像 发表于 06-09 18:04 5216次阅读

    镜像加法器的电路结构及仿真设计

    镜像加法器是一个经过改进的加法器电路,首先,它取消了进位反相门;
    的头像 发表于 07-07 14:20 2958次阅读
    镜像<b class='flag-5'>加法器</b>的电路结构及仿真设计

    同相加法器和反相加法器的区别是什么

    同相加法器和反相加法器是运算放大器在模拟电路设计中常用的两种基本电路结构,它们在信号处理方面有着不同的特性和应用场景。
    的头像 发表于 05-23 14:35 2735次阅读

    加法器的原理是什么 加法器有什么作用

    加法器是数字电路中的基本组件之一,用于执行数值的加法运算。加法器的基本原理和作用可以从以下几个方面进行详细阐述。
    的头像 发表于 05-23 15:01 3324次阅读
    <b class='flag-5'>加法器</b>的原理是什么 <b class='flag-5'>加法器</b>有什么作用

    串行加法器和并行加法器的区别?

    串行加法器和并行加法器是两种基本的数字电路设计,用于执行二进制数的加法运算。它们在设计哲学、性能特点以及应用场景上有着明显的区别。
    的头像 发表于 05-23 15:06 2757次阅读