0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA设计案例:数据缓存模块设计与验证实验

电子设计 来源:csdn 作者:没落骑士 2020-12-28 13:06 次阅读

本文设计思想采用明德扬至简设计法。上一篇博文中定制了自定义MAC IP的结构,在用户侧需要位宽转换及数据缓存。本文以TX方向为例,设计并验证发送缓存模块。这里定义该模块可缓存4个最大长度数据包,用户根据需求改动即可。

该模块核心是利用异步FIFO进行跨时钟域处理,位宽转换由VerilogHDL实现。需要注意的是用户数据包位宽32bit,因此包尾可能有无效字节,而转换为8bit位宽数据帧后是要丢弃无效字节的。内部逻辑非常简单,直接上代码:
`timescale 1ns / 1ps

// Description: MAC IP TX方向用户数据缓存及位宽转换模块
// 整体功能:将TX方向用户32bit位宽的数据包转换成8bit位宽数据包
//用户侧时钟100MHZ,MAC侧125MHZ
//缓存深度:保证能缓存4个最长数据包,TX方向用户数据包包括
//目的MAC地址 源MAC地址 类型/长度 数据 最长1514byte

module tx_buffer#(parameter DATA_W = 32)//位宽不能改动
(

//全局信号
input rst_n,//保证拉低三个时钟周期,否则FIF可能不会正确复位

//用户侧信号
input user_clk,
input [DATA_W-1:0] din,
input din_vld,
input din_sop,
input din_eop,
input [2-1:0] din_mod,
output rdy,

//MAC侧信号
input eth_tx_clk,
output reg [8-1:0] dout,
output reg dout_sop,
output reg dout_eop,
output reg dout_vld
);

reg wr_en = 0;
reg [DATA_W+4-1:0] fifo_din = 0;
reg [ (2-1):0] rd_cnt = 0 ;
wire add_rd_cnt ;
wire end_rd_cnt ;
wire rd_en;
wire [DATA_W+4-1:0] fifo_dout;
wire rst;
reg [ (2-1):0] rst_cnt =0 ;
wire add_rst_cnt ;
wire end_rst_cnt ;
reg rst_flag = 0;
wire [11 : 0] wr_data_count;
wire empty;
wire full;

/****************************************写侧*************************************************/
always @(posedge user_clk or negedge rst_n)begin
if(rst_n==1'b0)begin
wr_en end
else if(rdy)
wr_en end

always @(posedge user_clk or negedge rst_n)begin
if(rst_n==1'b0)begin
fifo_din end
else begin//[35] din_sop [34] din_eop [33:32] din_mod [31:0] din
fifo_din end
end

assign rdy = wr_data_count

/****************************************读侧*************************************************/

always @(posedge eth_tx_clk or negedge rst_n) begin
if (rst_n==0) begin
rd_cnt end
else if(add_rd_cnt) begin
if(end_rd_cnt)
rd_cnt else
rd_cnt end
end
assign add_rd_cnt = (!empty);
assign end_rd_cnt = add_rd_cnt && rd_cnt == (4)-1 ;

assign rd_en = end_rd_cnt;

always @(posedge eth_tx_clk or negedge rst_n)begin
if(rst_n==1'b0)begin
dout end
else if(add_rd_cnt)begin
dout end
end

always @(posedge eth_tx_clk or negedge rst_n)begin
if(rst_n==1'b0)begin
dout_vld end
else if(add_rd_cnt && ((rd_cnt dout_vld end
else
dout_vld end

always @(posedge eth_tx_clk or negedge rst_n)begin
if(rst_n==1'b0)begin
dout_sop end
else if(add_rd_cnt && rd_cnt == 0 && fifo_dout[35])begin
dout_sop end
else
dout_sop end

always @(posedge eth_tx_clk or negedge rst_n)begin
if(rst_n==1'b0)begin
dout_eop end
else if(add_rd_cnt && rd_cnt == 3 - fifo_dout[33:32] && fifo_dout[34])begin
dout_eop end
else
dout_eop end

/******************************FIFO复位逻辑****************************************/
assign rst = !rst_n || rst_flag;

always @(posedge user_clk or negedge rst_n)begin
if(!rst_n)begin
rst_flag end
else if(end_rst_cnt)
rst_flag end

always @(posedge user_clk or negedge rst_n) begin
if (rst_n==0) begin
rst_cnt end
else if(add_rst_cnt) begin
if(end_rst_cnt)
rst_cnt else
rst_cnt end
end
assign add_rst_cnt = (rst_flag);
assign end_rst_cnt = add_rst_cnt && rst_cnt == (3)-1 ;

//FIFO位宽32bit 一帧数据最长1514byte,即379个16bit数据
//FIFO深度:379*4 = 1516 需要2048
//异步FIFO例化
fifo_generator_0 fifo (
.rst(rst), // input wire rst
.wr_clk(user_clk), // input wire wr_clk 100MHZ
.rd_clk(eth_tx_clk), // input wire rd_clk 125MHZ
.din(fifo_din), // input wire [33 : 0] din
.wr_en(wr_en), // input wire wr_en
.rd_en(rd_en), // input wire rd_en
.dout(fifo_dout), // output wire [33 : 0] dout
.full(full), // output wire full
.empty(empty), // output wire empty
.wr_data_count(wr_data_count) // output wire [11 : 0] wr_data_count
);

endmodule

tx_buffer

接下来是验证部分,也就是本文的重点。以下的testbench包含了最基本的测试思想:发送测试激励给UUT,将UUT输出与黄金参考值进行比较,通过记分牌输出比较结果。
`timescale 1ns / 1ps

module tx_buffer_tb( );

parameter USER_CLK_CYC = 10,
ETH_CLK_CYC = 8,
RST_TIM = 3;

parameter SIM_TIM = 10_000;

reg user_clk;
reg rst_n;
reg [32-1:0] din;
reg din_vld,din_sop,din_eop;
reg [2-1:0] din_mod;
wire rdy;
reg eth_tx_clk;
wire [8-1:0] dout;
wire dout_sop,dout_eop,dout_vld;
reg [8-1:0] dout_buf [0:1024-1];
reg [16-1:0] len [0:100-1];
reg [2-1:0] mod [0:100-1];
reg err_flag = 0;

tx_buffer#(.DATA_W(32))//位宽不能改动
dut
(

//全局信号
.rst_n (rst_n) ,//保证拉低三个时钟周期,否则FIF可能不会正确复位
.user_clk (user_clk) ,
.din (din) ,
.din_vld (din_vld) ,
.din_sop (din_sop) ,
.din_eop (din_eop) ,
.din_mod (din_mod) ,
.rdy (rdy) ,
.eth_tx_clk (eth_tx_clk) ,
.dout (dout) ,
.dout_sop (dout_sop) ,
.dout_eop (dout_eop) ,
.dout_vld (dout_vld)
);

/***********************************时钟******************************************/
initial begin
user_clk = 1;
forever #(USER_CLK_CYC/2) user_clk = ~user_clk;
end

initial begin
eth_tx_clk = 1;
forever #(ETH_CLK_CYC/2) eth_tx_clk = ~eth_tx_clk;
end
/***********************************复位逻辑******************************************/
initial begin
rst_n = 1;
#1;
rst_n = 0;
#(RST_TIM*USER_CLK_CYC);
rst_n = 1;
end

/***********************************输入激励******************************************/
integer gen_time = 0;
initial begin
#1;
packet_initial;
#(RST_TIM*USER_CLK_CYC);
packet_gen(20,2);
#(USER_CLK_CYC*10);
packet_gen(30,1);
end

/***********************************输出缓存与检测******************************************/
integer j = 0;
integer chk_time = 0;
initial begin
forever begin
@(posedge eth_tx_clk)
if(dout_vld)begin
if(dout_sop)begin
dout_buf[0] = dout;
j = 1;
end
else if(dout_eop)begin
dout_buf[j] = dout;
j = j+1;
packet_check;
end
else begin
dout_buf[j] = dout;
j = j+1;
end
end
end
end

/***********************************score board******************************************/
integer fid;
initial begin
fid = $fopen("test.txt");
$fdisplay(fid," Start testing /n");
#SIM_TIM;
if(err_flag)
$fdisplay(fid,"Check is failed/n");
else
$fdisplay(fid,"Check is successful/n");
$fdisplay(fid," Testing is finished /n");
$fclose(fid);
$stop;
end

/***********************************子任务******************************************/
//包生成子任务
task packet_gen;
input [16-1:0] length;
input [2-1:0] invalid_byte;
integer i;
begin
len[gen_time] = length;
mod[gen_time] = invalid_byte;

for(i = 1;i if(rdy == 1)begin
din_vld = 1;
if(i==1)
din_sop = 1;
else if(i == length)begin
din_eop = 1;
din_mod = invalid_byte;
end
else begin
din_sop = 0;
din_eop = 0;
din_mod = 0;
end
din = i ;
end

else begin
din_sop = din_sop;
din_eop = din_eop;
din_vld = 0;
din_mod = din_mod;
din = din;
i = i - 1;
end

#(USER_CLK_CYC*1);
end
packet_initial;
gen_time = gen_time + 1;
end
endtask

task packet_initial;
begin
din_sop = 0;
din_eop = 0;
din_vld = 0;
din = 0;
din_mod = 0;
end
endtask

//包检测子任务
task packet_check;
integer k;
integer num,packet_len;
begin
num = 1;
$fdisplay(fid,"%dth:Packet checking.../n",chk_time);
packet_len = 4*len[chk_time]-mod[chk_time];
if(j != packet_len)begin
$fdisplay(fid,"Length of the packet is wrong./n");
err_flag = 1;
disable packet_check;
end

for(k=0;k
if(k%4 == 3)begin
if(dout_buf[k] != num)begin
$fdisplay(fid,"Data of the packet is wrong!/n");
err_flag = 1;
end
num = num+1;
end
else if(dout_buf[k] != 0)begin
$fdisplay(fid,"Data of the packet is wrong,it should be zero!/n");
err_flag = 1;
end
end
chk_time = chk_time + 1;
end
endtask

endmodule

tx_buffer_tb

可见主要是task编写及文件读写操作帮了大忙,如果都用眼睛看波形来验证设计正确性,真的是要搞到眼瞎。为保证测试完备性,测试包生成task可通过输入接口产生不同长度和无效字节数的递增数据包。testbench中每检测到输出包尾指示信号eop即调用packet_check task对数值进行检测。本文的testbench结构较具通用性,可以用来验证任意对数据包进行处理的逻辑单元。

之前Modelsim独立仿真带有IP核的Vivado工程时经常报错,只好使用Vivado自带的仿真工具。一直很头痛这个问题,这次终于有了进展!首先按照常规流程使用Vivado调用Modelsim进行行为仿真,启动后会在工程目录下产生些有用的文件,帮助我们脱离Vivado进行独立仿真。

在新建Modelsim工程时,在红框内选择Vivado工程中
.sim -> sim_1 -> behav下的modelsim.ini文件。之后添加文件包括:待测试设计文件、testbench以及IP核可综合文件。第三个文件在
.srcs -> sources_1 -> ip -> -> synth下。

o4YBAF9uIlCAEUzAAACig9pDNm4320.png

现在可以顺利启动仿真了。我们来看下仿真结果:

文件中信息打印情况:

从波形和打印信息的结果来看,基本可以证明数据缓存及位宽转换模块逻辑功能无误。为充分验证要进一步给出覆盖率较高的测试数据集,后期通过编写do文件批量仿真实现。在FPGAIC设计中,验证占据大半开发周期,可见VerilogHDL的非综合子集也是至关重要的,今后会多总结高效的验证方法!

编辑:hfy


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1632

    文章

    21816

    浏览量

    607038
  • 数据缓存
    +关注

    关注

    0

    文章

    23

    浏览量

    7193
  • VerilogHDL
    +关注

    关注

    2

    文章

    39

    浏览量

    19147
收藏 人收藏

    相关推荐

    FPGA图像处理基础----实现缓存卷积窗口

    素行进行缓存与变换。由于在图像处理过程中,经常会使用到卷积,因此需要对图像进行开窗,然后将开窗得到的局部图像与卷积核进行卷积,从而完成处理。   图像数据一般按照一定的格式和时序进行传输,在我进行实验的时候,处理图像时,让其以V
    的头像 发表于 02-07 10:43 185次阅读
    <b class='flag-5'>FPGA</b>图像处理基础----实现<b class='flag-5'>缓存</b>卷积窗口

    亚太区首座功率半导体动态可靠度验证实验室即将建立

    近日,艾默生测试与测量业务集团(前身为NI)与半导体封装测试解决方案的专业品牌蔚华科技携手宣布,双方将共同建设亚太区首座功率半导体动态可靠度验证实验室。这一举措旨在满足亚太地区日益增长的功率半导体
    的头像 发表于 01-15 16:48 332次阅读

    蔚华科技与恩艾共建亚太首座功率半导体验证实验

    半导体封装测试领域的知名品牌蔚华科技(TWSE: 3055)与经销合作伙伴恩艾(由艾默生与NI联合运营)近日宣布了一项重大合作计划。双方将携手在亚太地区建立首座功率半导体动态可靠度验证实验室,旨在
    的头像 发表于 01-14 14:34 204次阅读

    基于Agilex 5 FPGA模块系统介绍

    基于Agilex 5 FPGA模块系统(SoM)是一种由英特尔的合作伙伴提供的生产就绪型解决方案,专门针对嵌入式应用。采用先进的Agilex 5 FPGA的SoM可以满足边缘应用日益增长的需求
    的头像 发表于 12-19 17:10 401次阅读
    基于Agilex 5 <b class='flag-5'>FPGA</b>的<b class='flag-5'>模块</b>系统介绍

    缓存对大数据处理的影响分析

    缓存对大数据处理的影响显著且重要,主要体现在以下几个方面: 一、提高数据访问速度 在大数据环境中,数据存储通常采用分布式存储系统,
    的头像 发表于 12-18 09:45 291次阅读

    HTTP缓存头的使用 本地缓存与远程缓存的区别

    :资源的特定版本标识,用于验证资源是否被修改。 Last-Modified :资源最后修改时间,用于验证资源是否被修改。 Vary :告诉缓存服务
    的头像 发表于 12-18 09:41 195次阅读

    探讨移动设备中的缓存文件管理

      本文发表于FAST 2022。 探讨 缓存文件管理方法。本文 通过一个轻量级的基于机器学习的分类引擎来筛选和个性化管理缓存文件 ,实验 在 华为P9 和 Mate30 两部手机上进行 ,
    的头像 发表于 11-28 11:50 680次阅读
    探讨移动设备中的<b class='flag-5'>缓存</b>文件管理

    缓存之美——如何选择合适的本地缓存

    Guava cache是Google开发的Guava工具包中一套完善的JVM本地缓存框架,底层实现的数据结构类似于ConcurrentHashMap,但是进行了更多的能力拓展,包括缓存过期时间设置、
    的头像 发表于 11-17 14:24 455次阅读
    <b class='flag-5'>缓存</b>之美——如何选择合适的本地<b class='flag-5'>缓存</b>?

    海灵犀FPGA基础研学实验

    海灵犀FPGA基础研学实验箱(EDU_H6_01_1V0)是由中科亿海微电子科技(苏州)有限公司(简称:中科亿海微)自主研发设计的教学用具,由箱体、FPGA开发卡、LCD屏、USB下载线及相关
    的头像 发表于 06-13 08:11 1030次阅读
    海灵犀<b class='flag-5'>FPGA</b>基础研学<b class='flag-5'>实验</b>箱

    【紫光同创盘古PGX-Nano教程】——(盘古PGX-Nano开发板/PG2L50H_MBG324第二章)按键消抖实验例程

    logos2 系列 28nm 工艺的 FPGA(PG2L50H_MBG324)。集成下载器芯片,极大的便利 了用户的使用。 板卡搭载一颗容量为 2MB 的 SRAM 用于数据缓存,DAC 芯片用于
    发表于 04-28 17:57

    交换机分布缓存_述说数据中心交换机的重要性能指标——缓存

    交换机是数据中心不可缺少的网络设备,在数据中心里发挥着重要作用。在平时使用和采购时,大多数都关注交换机的背板带宽、端口密度、单端口速度、协议特性等方面的性能指标,很少有人去关注缓存指标,这是一个常常
    的头像 发表于 03-15 17:39 1003次阅读

    fpga原型验证平台与硬件仿真器的区别

    FPGA原型验证平台与硬件仿真器在芯片设计和验证过程中各自发挥着独特的作用,它们之间存在明显的区别。
    的头像 发表于 03-15 15:07 1327次阅读

    fpga原型验证流程

    FPGA原型验证流程是确保FPGA(现场可编程门阵列)设计正确性和功能性的关键步骤。它涵盖了从设计实现到功能验证的整个过程,是FPGA开发流
    的头像 发表于 03-15 15:05 1794次阅读

    fpga验证和测试的区别

    FPGA验证和测试在芯片设计和开发过程中都扮演着重要的角色,但它们各自有着不同的侧重点和应用场景。
    的头像 发表于 03-15 15:03 1368次阅读

    fpga验证和uvm验证的区别

    FPGA验证和UVM验证在芯片设计和验证过程中都扮演着重要的角色,但它们之间存在明显的区别。
    的头像 发表于 03-15 15:00 1850次阅读