0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PCB布局设计电路中的耦合电容解析

电子设计 来源:上海韬放电子 作者:上海韬放电子 2021-01-12 13:53 次阅读

无论是为新IC设计电路,还是为具有分立组件的PCB布局设计电路,设计中的导体组之间都将存在耦合电容。您永远无法真正消除直流电阻,铜粗糙度,互感和互电容等寄生现象。但是,通过正确的设计选择,您可以将这些影响减小到不会引起过多串扰或信号失真的程度。

耦合电感很容易发现,因为它以两种主要方式出现:

两个不垂直延伸且参考接地平面的网络可能具有彼此面对的环路(互感)。

提供返回电流路径的每个平面在其参考网络中将具有一些耦合电感(自感)。

由于耦合电容无处不在,因此很难确定。每当将导体放置在PCB或IC布局中时,它们都会具有一定的电容。这两个导体之间的电势差使它们像典型的电容器一样进行充电和放电。这会导致位移电流从负载分量转移出去,并导致信号在高频下在网之间交叉(即串扰)。

使用正确的电路模拟器工具集,您可以对LTI电路中的耦合电容如何影响时域和频域中的信号行为进行建模。一旦设计好布局,就可以从阻抗和传播延迟测量中提取耦合电容。通过比较结果,可以确定是否需要更改布局,以防止网络之间发生不必要的信号耦合。

电路图未明确考虑电路中导体之间的任何耦合电容。这是因为耦合电容取决于以下方面:

几何。导体之间的距离,其横截面积以及布局中彼此面对的区域的大小将决定电路的电容。

介电常数。分隔导体的电介质具有较高的介电常数,并且耦合电容与介电常数成正比。

寄生之间的耦合。单个导体可以具有多个网络的耦合电容。这些电容与其他寄生电容和电感结合在一起以产生复杂的耦合,这可能是频率的复杂函数。

由于耦合可能是频率的复杂函数,因此返回路径和串扰信号可能会产生结果,其频率也与源信号不同。这是由于设计电路,耦合电容和任何其他寄生效应(直流电阻和寄生电感)形成的等效网络的传递函数。

要检查寄生效应如何影响您的电路板,需要使用布局前和布局后仿真工具。布局前模拟要灵活得多,但是由于尚未创建布局,因此它们不能考虑布局中的几何形状。相比之下,正确的数字化布局后仿真工具集将几乎精确地说明寄生现象,但要查明布局中能产生最强耦合的确切部分却很困难。此外,如果不更改布局,就无法浏览不同的耦合电容或电感值来找到可接受的寄生耦合电平。

耦合电容建模工具

因为直到布局完成,布局中的耦合电容才是未知的,因此开始对耦合电容进行建模的位置在原理图中。这可以通过在关键位置添加一个电容器来建模组件中特定的耦合效应来完成。这允许根据电容器的放置位置对耦合电容进行现象学建模:

输入/输出电容。实际电路(IC)中的输入和输出引脚会由于引脚和接地层之间的隔离而具有一定的电容。对于小型SMD组件,这些电容值通常约为10 pF。这是在布局前仿真中要检查的主要点之一。

网之间的电容。在两个承载输入信号的网络之间放置一个电容器将对网络之间的串扰建模。通过可视化受害者和攻击者网络,您可以看到打开攻击者的方式如何在受害者上引发信号。由于这些电容非常小,并且串扰还取决于互感,因此通常仅在布局后执行串扰仿真才能获得最高的精度。

将电容走线回到接地层。即使走线很短,它相对于接地层仍将具有寄生电容,这会导致短传输线上的谐振。

示例:BJT输入引脚处的耦合电容

例如,让我们看一下使用PSpice中的瞬态分析的BJT晶体管的输入引脚与其参考平面之间的耦合。下图显示了一个示例电路,其中包括对短传输线上的寄生进行建模的电路。短线上的电感器和电容器(分别为L1和C1)以及电阻器模拟输出端带有一定电阻的短传输线行为。该系统中的源是范围为0至5 V的脉冲源,其上升/下降时间为2 ns,重复频率为100 ns(10 MHz)。晶体管Q1是40237 NPN晶体管。

放置电容器C2以模拟Q1输入端的pi电容。一个更准确的模型将包括连接到基极的引脚封装电感,但目前我们将重点放在将电容耦合回接地平面上。

pIYBAF_9OQyAUH_7AAB8G1ljWvk117.png

耦合电容仿真示意图

为了检查输入耦合电容如何影响信号行为并可能导致失真,将电容器的值定义为全局参数CAP2。这是通过打开组件属性对话框并将组件值设置为{CAP2}来定义的。需要使用PSpice中“放置零件”菜单中的“ PARAMS”零件将全局参数放置在原理图上。在下图中,我为C2 定义了从10到110 pF 的参数扫描范围(增量为20 pF)。总共给出6条曲线,每个C2值一条。

o4YBAF_9ORiASkINAACCMuFYJak212.png

在PSpice中定义参数扫描范围

现在已经定义了耦合电容范围,是时候运行仿真并检查耦合电容如何影响信号行为了。

时域和频域结果

下图显示了10 MHz脉冲流中第一个脉冲的发射极电压的放大图。由于这条短传输线上的共振,我们可以看到明显的振铃。当耦合电容较小(绿色曲线,C2 = 10 pF)时,振铃最大,但随着耦合电容增加(紫色曲线,C2 = 110 pF),振铃变小。

o4YBAF_9OSWAPreaAACOs8NFCZU900.png

参数扫描产生时域

耦合电容的作用是将信号带宽中的高频分量作为位移电流分流到地平面。这可以在频域结果中很好地看到,该结果是通过傅立叶变换计算的。

pIYBAF_9OTCASBX4AACnH4qiknM885.png

参数扫描产生频域

在信号带宽的高频端(〜120 MHz或更高),当耦合电容较大时,这些频率的峰值电平会降低。实际上,Q1和C2就像具有高截止频率的低通滤波器一样。请注意,这些信号的拐点频率约为175 MHz,约占总信号功率的75%。我们可以看到,耦合电容开始引起低于该频率的滤波,从而导致信号失真。

添加源阻抗匹配

尽管随着耦合电容的增加,振铃会略有减少,但新型IC往往具有较小的功能,从而具有较小的耦合电容。在这种情况下,这是有问题的,因为瞬态响应导致振幅更大的无阻尼振荡。这凸显了该电路设计中源极终端的需求。如果我们将源的输出阻抗匹配到〜50 Ohms,则可以预期瞬态响应具有较低的幅度,并且可能会出现临界阻尼或过阻尼的振荡。

下图显示了一个50欧姆电阻与脉冲电压源(V1)串联以提供源端接的瞬态分析结果。这显着抑制了上升沿的振荡,并使瞬态响应受到严重抑制。在下降沿,仍然存在一些下冲。

o4YBAF_9OUGAeBYIAACRI-BMCLM867.png

参数扫描导致时域带有源终止

根据传输线的电路原理,将产生临界阻尼的源端接电阻是(线路+负载电路)网络的输入阻抗的两倍。端接所需的确切电阻将取决于耦合电容的值。从设计的角度来看,您应该尝试在布局中找到一个可以容纳一定范围内耦合电容值的源电阻,以帮助抑制由于该电路中的瞬态响应而引起的过冲/下冲。

此设计中耦合电容可能突出的其他地方包括:

脉冲驱动器的输出(接地)。

晶体管的输出(接地)。

在晶体管输出和电源引脚之间。

上面的前两点结合起来可以增加互连的电容,从而稍微降低其阻抗。根据电路理论,这与增加晶体管的输入电容时一样,使瞬态响应更接近临界阻尼或更深,成为过度阻尼。在长传输线上,需要将负载阻抗与线路阻抗分开考虑,并且我们需要查看电路反射以确定耦合电容引起的信号行为。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电容器
    +关注

    关注

    63

    文章

    6182

    浏览量

    99092
  • 电感器
    +关注

    关注

    20

    文章

    2318

    浏览量

    70330
  • IC设计
    +关注

    关注

    37

    文章

    1290

    浏览量

    103678
  • 耦合电容
    +关注

    关注

    2

    文章

    154

    浏览量

    19767
  • 电路模拟器
    +关注

    关注

    3

    文章

    12

    浏览量

    11560
收藏 人收藏

    评论

    相关推荐

    buck电路PCB布局优化经验

    Buck电路的基本原理 在进行PCB布局之前,了解Buck电路的基本原理是必要的。Buck电路通常包括一个开关元件(如MOSFET)、一个电
    的头像 发表于 11-05 09:13 150次阅读

    电路耦合电容是什么电容,它有极性吗

    耦合电容的极性取决于其在电路的作用和连接方式。在某些情况下,耦合电容可能具有极性,而在其他
    的头像 发表于 09-27 10:44 374次阅读

    极间电容耦合电容怎么判断

    极间电容耦合电容是电子电路中常见的电容类型,它们在电路
    的头像 发表于 09-27 10:38 398次阅读

    深入解析晶振时钟信号干扰源:寄生电容、杂散电容与分布电容

    设计和PCB布局过程,对寄生电容、杂散电容和分布电容的考虑和处理是至关重要的。特别是在处理高频
    发表于 09-26 14:49

    pcb设计布局的要点是什么

    PCB设计布局是一个非常重要的环节,它直接影响到电路的性能、可靠性和成本。以下是关于PCB布局
    的头像 发表于 09-02 14:48 312次阅读

    Buck电路PCB layout布局设计和注意事项

    在DCDC电源电路PCB布局电路功能的实现和良好的各项指标来说都十分重要。今天我们以Buck电路
    的头像 发表于 08-28 10:47 2170次阅读
    Buck<b class='flag-5'>电路</b><b class='flag-5'>中</b><b class='flag-5'>PCB</b> layout<b class='flag-5'>布局</b>设计和注意事项

    电容耦合效应在显示液晶的应用

    电容耦合效应在显示液晶的应用主要体现在以下几个方面: 一、工作原理 电容耦合效应是指在电路
    的头像 发表于 08-09 15:37 308次阅读

    耦合电容大小对声音的影响

    耦合电容是电子电路中常见的一种电容,主要用于连接两个电路,实现信号的传递和隔离。在音频电路
    的头像 发表于 08-07 10:16 1303次阅读

    放大电路耦合电容的极性是什么

    耦合电容是放大电路的一个重要组成部分,它负责将前级放大器的输出信号传递到后级放大器的输入端。耦合电容
    的头像 发表于 08-07 09:34 640次阅读

    功放耦合电容大小与音质有关吗

    功放耦合电容大小与音质有关吗? 音质是指音响设备输出的声音音质的好坏,对于音响爱好者来说,音质是选择功放时非常重要的一个指标。而耦合电容作为功放电路
    的头像 发表于 03-01 14:35 4146次阅读

    耦合和去耦有什么区别,耦合电容和去耦电容的作用分别是什么?

    耦合和去耦有什么区别,耦合电容和去耦电容的作用分别是什么,在电路如何放置,有什么原则?
    的头像 发表于 02-04 09:05 3119次阅读

    放大电路耦合电容和旁路电容如何判别?

    放大电路耦合电容和旁路电容如何判别? 放大电路
    的头像 发表于 02-03 17:36 2456次阅读

    基本放大电路耦合电容,其中耦合电容可以用无极性的吗?

    基本放大电路耦合电容一般使用电容器作为元件,而这些电容器可以是极性的或无极性的。那么,在基本
    的头像 发表于 02-03 17:26 2037次阅读

    阻容耦合放大电路电容的作用是什么?

    阻容耦合放大电路电容的作用是什么? 阻容耦合放大电路是一种常用的放大
    的头像 发表于 02-03 17:26 2169次阅读

    高速ADC PCB布局布线技巧分享

    在高速模拟信号链设计,印刷电路板(PCB)布局布线需要考虑许多选项,有些选项比其它选项更重要,有些选项则取决于应用。最终的答案各不相同,但在所有情况下,设计工程师都应尽量消除最佳做法
    发表于 12-20 06:10