0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

早期阶段芯片级物理验证同步 SoC 设计方案解析

电子设计 来源:eepw 作者:eepw 2021-01-30 12:48 次阅读

鉴于先进工艺设计的规模和复杂性,而且各方为 抢先将产品推向市场而不断竞争,片上系统 (SoC) 设计团队没有时间等到所有芯片模块都全 部完成后才开始组装芯片。因此,SoC 设计人员 通常会在模块开发的同时开始芯片集成工作,以 便在设计周期的早期捕获并纠正任何布线违规, 从而帮助缩短至关重要的上市时间。错误在早期 阶段更容易修复,而且对版图没有重大影响,设 计人员在此阶段消除错误,可以减少实现流片所 需的设计规则检查 (DRC) 迭代次数(图 1)。

但是,早期阶段芯片级物理验证面临许多挑 战。通常,在布局规划的早期阶段,未完成模 块中报告的违规数量非常多,导致此现象的原 因是许多系统性问题可能广泛分布在整个设计中。系统性问题的典型例子包括:SoC 级别的模块布局偏离网格、SoC MACRO 封装外发生IP 合并、保留布线层上发生 IP 布线、时钟网络上的过孔类型 不正确,以及 SoC 中 IP 布局方向不匹配,如图 2 所示。在这 个阶段区分模块级违规和顶层布线违规并非易事。

pIYBAGAU46mAJmVyAAFlI3DL6x4745.png

图 1:识别和解决芯片集成问题与模块开发并行 进行,可最大程度地减少整个设计实现流程中 的 DRC 迭代次数。

对初始 DRC 运行使用晶圆代工厂规则集中的默认设置,通常会 导致运行时间非常长,还会报告非常多的违规,并产生极其庞 大的结果数据库,所有这些都使得调试极其困难且耗时。

o4YBAGAU47OAIuGKAAG11EZeQAs076.png

图 2:系统性错误常常导致早期芯片级验 证中出现大量违规。

在此早期阶段,SoC 设计人员的目标通常是最大限度地减少每 次 DRC 迭代的运行时间,并且仅关注此时相关的违规情况。 除了将模块违规与需要调试的布线违规区分开来之外,SoC 设 计人员还可以将模块违规送回模块所有者进行调试和更正。 从早期的布局规划到最终的产品流片,SoC 设计人员的终极目 标是发现并修复 SoC 系统性问题。

改善错误较多的模块/芯片级验证

Calibre™ Reconnaissance (Calibre Recon) 工具是一个完整的功能包,支持设计团队在设计周 期的早期阶段(此时各种组件尚不成熟)便开始对整个芯片设计版图进行探索和物理验 证。Caliber Recon 工具能够非常有效地发现早期潜在的集成问题,向设计团队快速提供反 馈以便其采取适当的纠正措施,最终减少 DRC 迭代次数,缩短总周转时间,加快产品上市。 此外,Caliber Recon 工具经过精心设计,从第一次运行便能提供所有这些功能,支持在任何 工艺技术节点上按原样使用任何晶圆代工厂/独立设备制造商 (IDM) 的 Caliber sign-off 设计 套件。

自动检查选择

当存在错误时,某些规则检查往往会运行很长时 间。取消选择此类规则可以大大加快运行速度,但 设计人员如何确定取消选择哪些检查呢?取消选择涉 及许多操作的检查?还是取消选择某一类检查,例 如天线检查或所有连通性检查?选择运行 “最佳” 的一 组检查并不容易,这可能需要进行大量的高级分 析,并对晶圆代工厂规则集进行一些编辑(图 3)。

Caliber Recon 工具可自动取消选择与当前开发阶段无 关的检查。Calibre 引擎根据检查类型和检查涉及的操 作数量来决定取消选择哪些检查,以提供良好的覆盖率、加快运行时间并减少内存消耗。对于各种工艺节点,平均而言,Caliber Recon 工具可将 要执行的检查数量减少约 50%。取消选择的检查/类别会在过程记录副本中报告,以供用户 参考。Caliber Recon 工具也会接受用户手动取消选择的所有检查/类别。

图 3:选择正确的检查集合进行早期验 证需要仔细分析。

自动取消选择检查时,报告的违规总数通常会减少到原数量的 70% 左右(图 4)。但这些违 规对于目标实现阶段更有意义,有助于分析和调试实际系统性问题。

pIYBAGAU48uAKWadAAGYLCjGdVU386.png

图 4:使用 Caliber Recon 功能时执行的规则检查总 数量的减少情况,以及最 终报告的违规数量的减少 情况。

Caliber Recon 工具最多可将整体 DRC 运行时间缩短为原来的 1/14,同时仍能检查总 DRC 集合的大约 50%。Calibre 引擎自动选择的规则子集可以有效识别布局规划和子芯片集成问 题,向设计团队快速提供反馈以便采取适当的纠正措施,并显著缩短总周转时间。图 5 基于 测试显示了不同芯片的 DRC 运行时间结果。

o4YBAGAU49eATj-DAAHbQctmD7A553.png

图 5:在各种芯片上测试 Caliber Recon 自动检查选 择的结果表明,早期实 现阶段的 DRC 运行时间和 内存耗用量大幅减少。

Caliber Recon 验证不仅能帮助 SoC 设计人员进行早期芯片级验证,而且支持早期模块验证。 因为模块和芯片设计是并行完成,所以模块设计人员可以在模块上运行 Caliber Recon 验证。 如果报告了错误,模块设计人员可以修复系统性问题。如果 Caliber Recon 结果无错误,便可 将模块传递给芯片,而模块设计人员可以在该模块上并行运行其余规则。如图 6 所示,在初 始布线期间对模块(重复单元)运行 Caliber Recon 工具可使运行时间缩短 8 倍,内存占用减 少 4 倍。

o4YBAGAU4-OAEX-1AAJpuZalj0Y703.png

图 6:在不同的开发阶段 时,将针对重复单元和完 整芯片执行的 Calibre Recon 和完整 Calibre nmDRC 进 行比较,结果显示 Calibre Recon 的运行时间和内存 耗用量都减少。

灰框排除

遵循相同的排除概念,但这次是从设计 角度来看,是否有可能忽略设计的某些 部分(主要是不成熟的模块),从而聚 焦于接口和布线违规并减少运行时间? Caliber Recon 灰框功能允许设计人员在 检查顶层布线时不必考虑单元细节。 灰框标记可移除指定单元中的数据,而 不会从更高的父层级中删除几何形状

(图 7)。因此,指定单元上的任何布线 违规仍能被捕捉到。此外,设计人员可 以通过缩小单元的范围来在移除的几何 形状周围保留一个晕圈,以便捕获指定 单元与其相邻单元之间的接口违规。

o4YBAGAU4--AeUi6AAFi5jvs2FA789.png

图 7:利用 Caliber Recon 灰框标记,设计人员可以从 DRC 中排除版图的某些部分,同时仍能检查这些区域是 否存在接口或布线违规。

灰框解决方案对于矩形和非矩形单元均适用,但设计人员可能需要指定代表非矩形单元范 围的层(边界层可用于此目的)。

虽然灰框功能可缩短运行时间,但从指定单元中移除几何形状可能会引入一些新的 DRC 违 规,这将需要额外的调试来区分哪些是实际违规,哪些是因为从指定单元中切除几何形状所 产生的违规。为了避免此问题,以及免于编辑晶圆代工厂规则集来为灰框功能增加规范说 明,设计人员可以将 Caliber Recon 灰框功能与 Caliber Auto-Waivers 功能结合使用。如图 8 所示,其主要目的是不检查不完整模块中的几何形状以缩短运行时间,附带的好处是可豁免 从指定单元排除区域时所引入的任何违规。这种结合使得设计人员可以专注于原始(有效) DRC 接口违规。所有豁免的违规都保存到豁免结果数据库文件中,供日后需要时审查。

o4YBAGAU4_yAdMJoAAJWVh4lV24083.png

图 8:Caliber Recon 灰框 功能与 Calibre Auto-Waiver 功能相结合,使得设计人 员可以执行接口和顶层布 线验证,而不必担心因为 从灰框单元中移除几何形 状而产生错误。

灰框解决方案能将 SoC 团队指向需要注意的接口 DRC 错误。它还将与组装相关的集成和布 线违规与不成熟模块的违规区分开来。如图 9 所示,将此功能与自动选择相关检查相结合, 可进一步缩短运行时间,因为系统会针对设计区域报告的违规,选择其中需要在特定阶段 多加注意的违规,让设计人员只专注在这些违规上。因此,它有助于设计团队在设计周期 的早期解决更多关键接口问题,避免最后一刻出现令人沮丧的意外。

pIYBAGAU5AiACab7AANs7JqLOgI813.png

图 9:Caliber Recon 自动 检查选择与灰框功能结合 使用,有助于在早期设计 实现阶段将验证重点放在 关键接口和布线问题上。

DRC ANALYZE

Caliber Recon DRC Analyze 功能可帮助设计人员快速分析其设计并直观地查看错误分布,以 便找出可快速提高版图质量的机会点。

DRC Analyze 功能允许设计人员绘制不同的直方图(基于层次化单元或窗口)以进行芯片分 析,并为这些直方图指定自定义缩放范围。它还支持绘制结果的彩色图,既可以在独立窗 口上绘制,也可以映射到设计上,让设计人员能够探查每个单元和每个窗口的错误细节, 结果会分布在整个设计上(图 10)。

o4YBAGAU5BWAaM02AAKQjE7TPrs713.png

图 10:Caliber Recon DRC Analyze 功能支持在错误 检查和调试过程中进行 快速、深入的可视化和 分析。

DRC Analyze 功能的主要优点是,设计人员可以使用晶圆代工厂规则集来执行所有必需的分 析,而无需进行任何编辑。与这种分析在芯片分析和调试期间提供的价值相比,相关开销

(运行时间平均增加 10% 和内存耗用量平均增加 20% )非常小。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • soc
    soc
    +关注

    关注

    38

    文章

    4193

    浏览量

    218696
  • 晶圆代工
    +关注

    关注

    6

    文章

    859

    浏览量

    48623
  • 芯片分析
    +关注

    关注

    0

    文章

    3

    浏览量

    10365
收藏 人收藏

    评论

    相关推荐

    芯片级封装的bq24165/166/16评估模块

    电子发烧友网站提供《芯片级封装的bq24165/166/16评估模块.pdf》资料免费下载
    发表于 12-18 14:56 0次下载
    <b class='flag-5'>芯片级</b>封装的bq24165/166/16评估模块

    瑞沃微:一文详解CSP(Chip Scale Package)芯片级封装工艺

    在半导体技术的快速发展中,封装技术作为连接芯片与外部世界的桥梁,其重要性不言而喻。CSP(Chip Scale Package),即芯片级封装技术,正是近年来备受瞩目的一种先进封装技术。今天,请跟随瑞沃微的脚步,一起深入了解CSP芯片级
    的头像 发表于 11-06 10:53 1209次阅读
    瑞沃微:一文详解CSP(Chip Scale Package)<b class='flag-5'>芯片级</b>封装工艺

    SOC芯片设计的挑战与解决方案

    SOC(System on Chip,系统芯片)设计是将计算机或其他电子系统的大部分或全部组件集成到单个集成电路(IC)上的过程。这种集成可以显著提高性能、降低成本、减小尺寸,并提高能效。 1.
    的头像 发表于 10-31 15:01 528次阅读

    实现芯片级封装的最佳热性能

    电子发烧友网站提供《实现芯片级封装的最佳热性能.pdf》资料免费下载
    发表于 10-15 10:22 0次下载
    实现<b class='flag-5'>芯片级</b>封装的最佳热性能

    解决芯片级功率MOSFET的组装问题

    电子发烧友网站提供《解决芯片级功率MOSFET的组装问题.pdf》资料免费下载
    发表于 08-27 11:17 0次下载
    解决<b class='flag-5'>芯片级</b>功率MOSFET的组装问题

    概伦电子宣布正式推出芯片级HBM静电防护分析平台ESDi

    近日,概伦电子宣布正式推出芯片级HBM静电防护分析平台ESDi和功率器件及电源芯片设计分析验证工具PTM,并开始在国内外市场广泛推广。
    的头像 发表于 05-28 10:09 622次阅读

    聚焦广交会 | 芯片级纯精油雾化方案:馨香守护,为您提供无忧舒适的芬芳氛围

    4月15日,由商务部和广东省人民政府联合主办,中国对外贸易中心承办的第135届中国进出口商品交易会于广州正式开幕,奥迪威携自主研发的芯片级纯精油雾化方案亮相现场,展示超声波雾化技术如何营造无忧舒适的芬芳氛围,共享智慧生活新方式。
    的头像 发表于 04-17 08:00 241次阅读
    聚焦广交会 | <b class='flag-5'>芯片级</b>纯精油雾化<b class='flag-5'>方案</b>:馨香守护,为您提供无忧舒适的芬芳氛围

    芯片级封装中的500mA/3MHz同步降压转换器TPS623xx数据表

    电子发烧友网站提供《芯片级封装中的500mA/3MHz同步降压转换器TPS623xx数据表.pdf》资料免费下载
    发表于 04-10 14:55 0次下载
    <b class='flag-5'>芯片级</b>封装中的500mA/3MHz<b class='flag-5'>同步</b>降压转换器TPS623xx数据表

    芯片级封装中的500mA 6MHz同步降压转换器TPS6260x数据表

    电子发烧友网站提供《芯片级封装中的500mA 6MHz同步降压转换器TPS6260x数据表.pdf》资料免费下载
    发表于 03-28 09:34 0次下载
    <b class='flag-5'>芯片级</b>封装中的500mA 6MHz<b class='flag-5'>同步</b>降压转换器TPS6260x数据表

    英特尔为汽车行业打造芯片级增强版硬件虚拟化功能

    借助英特尔市场领先的芯片级增强版硬件虚拟化功能,英特尔汽车事业部旨在为行业提供具有卓越性能和超高效率的软件定义汽车(SDV)的架构方案,帮助用户获得99%的高效率和零延迟。
    的头像 发表于 03-18 10:30 861次阅读
    英特尔为汽车行业打造<b class='flag-5'>芯片级</b>增强版硬件虚拟化功能

    是德科技成功完成Autotalks 5G新空口车联网系统芯片验证

    是德科技(Keysight Technologies, Inc.)全力支持Autotalks,通过其PathWave V2X解决方案对TEKTON3车联网(V2X)系统芯片SoC
    的头像 发表于 03-08 10:33 980次阅读

    芯片级的薄膜电阻和板的厚膜电阻都是如何进行修调呢?

    在MEMS某些器件设计中,常常需要用到可调电阻,在板电路上可以通过电位器对贴片电阻进行调阻,但在芯片级的薄膜电阻和板的厚膜电阻都是如何进行修调呢?
    的头像 发表于 02-29 10:44 1041次阅读
    在<b class='flag-5'>芯片级</b>的薄膜电阻和板<b class='flag-5'>级</b>的厚膜电阻都是如何进行修调呢?

    全球首款芯片级智能头盔解决方案

    搭载展锐芯片级解决方案的智能头盔可实现: 1. 高标准、高质量、高可靠 安全无小事,智能头盔的使用环境复杂多样,这要求从硬核内芯到硬件模块都必须高标准、高质量、高可靠。紫光展锐的智能头盔解决方案
    的头像 发表于 02-27 13:04 472次阅读
    全球首款<b class='flag-5'>芯片级</b>智能头盔解决<b class='flag-5'>方案</b>

    是德科技成功完成Autotalks 5G新空口车联网系统芯片验证

    2024年2月26日,是德科技(Keysight Technologies,Inc.)支持 Autotalks 使用 PathWave V2X 解决方案对 TEKTON3 车联网(V2X)系统芯片
    的头像 发表于 02-26 14:20 423次阅读

    Vision Pro芯片级内部拆解分析

    近日国外知名拆解机构iFixit对Vision Pro进行了芯片级拆解,结果显示该设备内含大量德州仪器(TI)芯片,还有一颗国产芯片——兆易创新GD25Q80E 1 MB 串行 NOR 闪存。
    的头像 发表于 02-21 10:11 1342次阅读
    Vision Pro<b class='flag-5'>芯片级</b>内部拆解分析