来源:搜狐
机器视觉能够带来什么?可以让自动驾驶在道路上更安全的行驶,可以让农作物能够更健康的成长,可以让机器人在我们的生活中充当好帮手。
机器视觉在工业上应用领域广阔,核心功能包括:测量、检测、识别、定位等。其产业链可以分为上游部件级市场、中游系统集成和整机装备市场和下游应用市场。机器视觉上游有光源、镜头、工业相机、图像采集卡、图像处理软件等软硬件提供商,中游有集成和整机设备提供商,行业下游应用较广,主要下游市场包括电子制造行业、汽车、印刷包装、烟草、农业、医药、纺织和交通等领域。
就像歌词里唱的,“让我做你的眼睛,那样你才能看的清”。机器视觉对于机器人而言,机器视觉赋予其精密的运算系统和处理系统,模拟生物视觉成像和处理信息的方式,让机械手更加拟人灵活的操作执行,同时识别、比对、处理场景,生成执行指令,进而一气呵成的完成动作。
机器视觉技术的快速发展使得大量新应用成为可能,同时也有助于推动当今机器视觉集成商的需求和技术能力。
首先,考虑3D成像:更容易获得捕获视野的3D信息的机器视觉组件。这些设备在成像方法和实现技术方面差异很大。集成商可以将这些设备应用于各种应用,包括高精度表面分析、3D零件和特征测量,以及使用3D图像数据进行检查,而不是2D灰度信息。还有最新推出的机器人视觉引导,在机器人导引中,随机的产品甚至是混合的、随机堆积的产品都可以被夹持器挑出并抓取。
其次,高光谱和多光谱成像是一项相对较新的技术。这些摄像机收集单个场景的多个(有时是数百个)图像,每个图像具有不同的窄带宽光谱信息。在熟悉该技术的集成商手中,可以在线完成材料离散光谱分析甚至化学成分的应用。食品,制药和回收等许多行业都可以从这种检测能力中受益。
第三,许多工业应用需要高速成像和处理。线扫描是一种在高分辨率下实现更高成像速率的常用技术,但这些组件的集成可能比普通区域成像应用更复杂。同样,高速成像和处理是需要熟练集成的任务。
最后,深度学习变得越来越受欢迎。虽然机器视觉并不是全新的,但机器学习及其最新的实现深度学习是该行业的最新流行语。这项技术在许多应用领域显示了巨大的潜力,但是它需要一个熟练的集成人员来确定特定任务的深度学习的可行性和实现参数。
可以说,机器视觉集成已经发展起来,就像整个机器视觉行业一样。在不断扩大的应用基础上提供尖端的解决方案,机器视觉集成具有广阔的前景
审核编辑黄昊宇
-
机器视觉
+关注
关注
161文章
4348浏览量
120136
发布评论请先 登录
相关推荐
评论