0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能背后的基石——大数据

454398 来源:alpha007 作者:alpha007 2022-12-09 16:05 次阅读

来源:ST社区

人工智能、大数据、物联网以及云计算,彼此之间皆存在着千丝万缕的“亲缘”关系!

半个多世纪的某个夏天,麦卡锡、明斯基等众科学家们举办了一次Party,共同研究用机器模拟智能的问题,也是在那时,“人工智能(AI)”的理念正式被提出!

人工智能(Artificial Intelligence)简称AI,AI能根据大量的历史资料和实时观察(real-time observation)找出对于未来预测性的洞察(predictive insights)。

如今人工智能商业化正在快速推进中,比如我们所知道和了解的人像识别、图像识别技术、语音识别、自然语言理解、用户画像等。此类技术也现阶段已经在金融、物联网等行业得到应用!

对于未来而言,人工智能会在人类生活的方方面面,发挥越来越多的作用,也会刷更多的存在感,慢慢的更会懂我们很多!

不远的将来会有越来越多的自动化的系统出现,比如刷脸支付已经在来的路上了!

先以人工智能为例,抛弃其他任何,也便不会有今天大红大紫的人工智能!

不得不说的人工智能背后的基石:大数据

大数据是人工智能的基石,目前的深度学习主要是建立在大数据的基础上,即对大数据进行训练,并从中归纳出可以被计算机运用在类似数据上的知识或规律。简单而言何为大数据?

虽然很多人将其定义为“大数据就是大规模的数据”。

但是,这个说法并不准确!

“大规模”只是指数据的量而言。

数据量大,并不代表着数据一定有可以被深度学习算法利用的价值。

例如:地球绕太阳运转的过程中,每一秒钟记录一次地球相对太阳的运动速度、位置,可以得到大量数据。可如果只有这样的数据,其实并没有太多可以挖掘的价值!

大数据这里我们参阅马丁·希尔伯特的总结,今天我们常说的大数据其实是在2000年后,因为信息交换、信息存储、信息处理三个方面能力的大幅增长而产生的数据:

信息交换:据估算,从1986年到2007年这20年间,地球上每天可以通过既有信息通道交换的信息数量增长了约217倍,这些信息的数字化程度,则从1986年的约20%增长到2007年的约99.9%。在数字化信息爆炸式增长的过程里,每个参与信息交换的节点都可以在短时间内接收并存储大量数据。

信息存储:全球信息存储能力大约每3年翻一番。从1986年到2007年这20年间,全球信息存储能力增加了约120倍,所存储信息的数字化程度也从1986年的约1%增长到2007年的约94%。1986年时,即便用上我们所有的信息载体、存储手段,我们也不过能存储全世界所交换信息的大约1%,而2007年这个数字已经增长到大约16%。信息存储能力的增加为我们利用大数据提供了近乎无限的想象空间。

信息处理:有了海量的信息获取能力和信息存储能力,我们也必须有对这些信息进行整理、加工和分析的能力。谷歌、Facebook等公司在数据量逐渐增大的同时,也相应建立了灵活、强大的分布式数据处理集群。

大数据在应用层面:大数据往往可以取代传统意义上的抽样调查、大数据都可以实时获取、大数据往往混合了来自多个数据源的多维度信息、大数据的价值在于数据分析以及分析基础上的数据挖掘和智能决策。

没有人工智能的物联网:没大戏

而物联网又让人工智能:更准确

物联网:英文名为Internet of Things,可以简单地理解为物物相连的互联网,正是得益于大数据和云计算的支持,互联网才正在向物联网扩展,并进一步升级至体验更佳、解放生产力的人工智能时代。

在未来,虚拟世界的一切将真正实现物理化!

物联网主要通过各种设备(比如RFID传感器,二维码等)的接口将现实世界的物体连接到互联网上,或者使它们互相连接,以实现信息的传递和处理。

对于人工智能而言,物联网(IoT)其实肩负了一个至关重要的任务:资料收集

概念上,物联网可连接大量不同的设备及装置,包括:家用电器和穿戴式设备。嵌入在各个产品中的传感器(sensor)便会不断地将新数据上传至云端。这些新的数据以后可以被人工智能处理和分析,以生成所需要的信息并继续积累知识。

互联网在现实的物理世界之外新建了一个虚拟世界,物联网将会把两个世界融为一体。

物联网的终极效果是万物互联,不仅仅是人机和信息的交互,还有更深入的生物功能识别读取等等!

人工智能背后强大的助推器:云计算

云计算(详情参阅之前回答:什么是云计算?)是将我们传统的IT工作转为以网络为依托的云平台运行,NIST(美国国家标准与技术研究院)在2011年下半年公布了云计算定义的最终稿,给出了云计算模式所具备的5个基本特征(按需自助服务、广泛的网络访问、资源共享、快速的可伸缩性和可度量的服务)、3种服务模式(SaaS(软件即服务)、PaaS(平台即服务)和IaaS(基础设施即服务))和4种部署方式(私有云、社区云、公有云和混合云)

云计算发展较早,经过10年发展,国内已经拥有超百亿规模,云计算也不再只是充当存储与计算的工具而已!

未来可以预见的是,云计算将在助力人工智能发展层面意义深远!

而反之,人工智能的迅猛发展、巨大数据的积累,也将会为云计算带来的未知和可能性!

人工智能也好、大数据也好、物联网及云计算也好,彼此依附相互助力,藕不断丝且相连!

合力搭档在一起,组合拳出击才更有力量:给未来多一些可能,给未知多一些可能性,给不可能多一些可能!

希望我们都能认清这个时代,拥抱这个时代,然后活好余生。

新的时代正在来临,马云创造淘宝的时候说:要消灭纸币!我要让天下没有难做的生意!

从2016年开始,王健林甩卖万达广场,大步迈向轻资产之路;

雷军带领小米触底反弹,又迎来一个雷布斯的时代;

王小川去美国上市敲了钟,AI时代搜索的未来是问答

15年前,马云如何锁定18罗汉,成就了今天阿里巴巴的神话?因为他选择了时代的趋势,改变了传统生意。

华为为什么能从4万元发展为2000多亿?因为他在90年代就开始与客户在全国建立合资公司,因为项目是大家一起做的!

近年来,人工智能技术创新如火如荼,但最终的发展前景取决于产业落地。中国人工智能技术和产业的发展,不仅会成为中国经济转型和升级的内生动力,也能够为世界经济的繁荣和发展贡献中国智慧。

小白人-餐桌智媒体有效将人工智能+媒体和产业相结合,实现落地应用,在智能科技领域正在快速崛起成为世界不可忽视的力量。小白人拥有广告投放、游戏交互、智能餐饮三大核心功能,为餐饮商打造智能餐饮,为消费者丰富用餐体验,为广告主高效转化产品。

审核编辑黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1789

    文章

    46622

    浏览量

    236969
  • 大数据
    +关注

    关注

    64

    文章

    8853

    浏览量

    137201
收藏 人收藏

    评论

    相关推荐

    人工智能云计算大数据三者关系

    人工智能、云计算与大数据之间的关系是紧密相连、相互促进的。大数据人工智能提供了丰富的训练资源和验证环境;云计算为大数据
    的头像 发表于 11-06 10:03 48次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    、优化等方面的应用有了更清晰的认识。特别是书中提到的基于大数据和机器学习的能源管理系统,通过实时监测和分析能源数据,实现了能源的高效利用和智能化管理。 其次,第6章通过多个案例展示了人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析能力,加速生命科学
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不仅极大地提高了
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章从科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI for Science的技术支撑进行解读。 第3章介绍了在
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    科达嘉电感器在大数据人工智能领域被广泛应用

    近年来,大数据人工智能成为科技领域的热门话题。大数据人工智能提供了大量的数据作为输入,使得人工智能
    的头像 发表于 02-29 13:56 440次阅读

    为何电感器对于大数据人工智能产业发展至关重要

    电感器作为智能设备电路中的重要元件,已经成为推动大数据智能产业发展与革新的基础技术。科达嘉通过技术创新,为大数据人工智能领域提供高可靠的
    的头像 发表于 02-28 14:48 419次阅读
    为何电感器对于<b class='flag-5'>大数据</b>及<b class='flag-5'>人工智能</b>产业发展至关重要

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    科达嘉电感器广泛应用于大数据人工智能领域为AI赋能

    近年来,大数据人工智能成为科技领域的热门话题。大数据人工智能提供了大量的数据作为输入,使得人工智能
    的头像 发表于 02-23 17:29 783次阅读

    数据中心如何支持人工智能

    随着人工智能(AI)的迅速发展和广泛应用,数据中心作为AI技术的基石,也面临着前所未有的挑战和机遇。为了满足AI的高性能和低延迟要求,数据中心基础设施必须进行相应的改变和升级。
    的头像 发表于 12-21 14:33 617次阅读
    <b class='flag-5'>数据</b>中心如何支持<b class='flag-5'>人工智能</b>

    语音数据集在人工智能中的应用与挑战

    一、引言 随着人工智能技术的快速发展,语音数据集在各种应用中发挥着越来越重要的作用。语音数据集是AI语音技术的基石,对于语音识别、语音合成、语音情感分析等任务具有重要意义。本文将详细介
    的头像 发表于 12-14 15:00 629次阅读