0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

合成孔径成像的原理及发展

iIeQ_mwrfnet 来源:微波射频网 作者:微波射频网 2020-09-27 11:38 次阅读

一、引言

合成孔径成像自20世纪50年代提出,应用于雷达成像,历经70年的研发,已经日趋成熟,成功地用于环境资源监测、灾害监测、海事管理及军事等领域。受物理环境制约,合成孔径在声呐成像中的研发与应用起步稍迟,滞后于雷达,近年来在民用及军事领域的研究与应用进展加速。此外,近年来合成孔径成像在声学无损检测、医学超声成像等领域的研发也有长足进步,并扩展到其他领域如光学微波成像等。本文简要介绍了条带合成孔径成像的原理及其在雷达、声呐、无损检测及医学影像等方面的应用及发展。

二、合成孔径成像原理

条带合成孔径成像利用小孔径基阵,在直线运动轨迹上均速移动,并在确定位置顺序发射,接收并存储回波信号。根据空间位置和相位关系对不同位置的回波信号进行相干叠加处理,合成虚拟大孔径的基阵,从而获得沿运动方向的高分辨率。

在1985年的先驱奖故事中,合成孔径雷达(SAR)的发明者Wiley谦逊地说:我有幸想到了一个基本想法,我称之为多普勒波束锐化(DBS),而不是合成孔径雷达。和所有信号处理一样,有一个双重理论:一个是频域解释,这是多普勒分析;在时域内分析系统,这就是合成孔径雷达。在时间域对合成孔径成像的“合成阵列”的解释如图1所示。

图1合成阵列原理

其中,阵元或天线水平长度为L,水平波束开角为θ==λ/L。工作频率时,波长为λ。阵元行进轨迹为直线,点目标与行进轨迹的垂直距离为R。阵元在位置1时,目标进入波束;阵元在位置N时,目标退出波束。合成孔径阵元数为N,合成孔径长为D=R×θ==R×λ/L,合成孔径波束开角为θsyn=λ/D=λ/(R×(λ/L))=L/R。

采样结束,合成孔径波束形成后处理时,对不同位置的回波信号进行相干叠加,需要计算阵元发射信号至目标、目标反射信号返回阵元的往返声程2R。因此,合成孔径波束开角实际应为θsyn=λ/2D=λ/(2R×(λ/L))=L/2R。距直线轨迹垂直距离为R时,合成孔径波束形成的线分辨率为δsyn=R×θsyn=R×L/2R=L/2。

20世纪50年代在雷达成像中提出“合成孔径”原理时,称为“多普勒波束锐化”。这时在频率域对合成孔径成像的解释如图2所示。

图2多普勒频移原理

实孔径为D的雷达天线或声呐换能器阵元沿x轴自左至右匀速运行,发射并接收位于A的点目标的回波信号。阵元速度为v,在x轴上位置为x=vt。

回波信号的多普勒频移为

fd=2v/λ×sinθ≈2v/λtanθ=2v/(R0λ)x=2v2/(R0λ)t ⑴

多普勒频移变化率μ=dfd/dt=2v2/R0λ,点目标进入并退出波束的持续时间为T=(R0λ/Dv)×c,回波信号的多普勒带宽为Bd=Tμ=2v/D。

因此,合成孔径线分辨率为

δsa=v/Bd=D/2 ⑵

极限情况:θmax=π/2,fmax=2v/λ,Bmax=4v/λ。

合成孔径极限分辨率为

δmax=v/Bd=λ/4 ⑶

三、合成孔径雷达的发展

1951年,美国Goodyear公司的Wiley首先提出用频率分析方法改善雷达角分辨率,此概念最先应用在射电天文学及雷达成像。

数个月后,美国伊利诺依大学及密歇根大学的研究人员独立研发了SAR。密歇根大学的研究人员于1957年给出了最早的合成孔径图像。但是,由于图像质量及分辨率都不高,当时几乎取消了SAR的研究计划。当时的分辨率指标是约16m,现在已经进入了SAR的兴盛时期。表1给出了系统常用频率及波长范围,表2列出一些星载及机载SAR成像雷达的参数

表1SAR系统常用频率及波长范围

注:L、C及X是最常用的频带。P及L频带用于叶簇穿透、地表下成像以及生物量估计;C、S及X频带用于海洋、冰层及沉陷监测;X及Ku频带用于积雪监测;X及Ka用于高分辨率成像。

表2一些星载及机载SAR成像雷达的参数

四、合成孔径(侧扫)声呐的发展

海洋占据地球表面约70%的面积,是人类开展交通运输、军事斗争和获取资源的场所。这就必须有在海洋中观测、通讯、导航、定位的工具。在海洋中可检测很多物理场,如:磁场、水压场、尾流场、温度场等。这此物理场的可检测距离大致与源本身尺度同一量级,不能在水中远距离传递信息。而水声技术在其中扮演了重要的角色。声波是迄今为止在水中唯一能有效地远距离传递信息的物理场。声波与电磁波的衰减之比如下:10kHz声波在水中衰减仅约1dB/km,10kHz电磁波在水中衰减高达3000dB/km。

实孔径侧扫声呐(SSS)多为拖曳方式工作,如图3所示。

图3侧扫声呐拖曳工作方式及声图

最早的侧扫声呐实验是Hagemann(1958)为美国海军完成的,直到1980年才解密发表。基于Hagemann的工作,西屋公司(Westinghouse)在20世纪60年代初建造了第一台实用的侧扫声呐。很快,侧扫声呐就成为海底调查、海底成像方面的重要工具,揭示了海底上很多以往不为人知的细节。商用侧扫声呐系统最早用于海洋水下考古,特别是寻找沉船。

与实孔径侧视雷达相似,实孔径侧扫声呐沿运动方向有恒定的波束开角,由声呐换能器的实际孔径确定,侧扫声呐水平波束及声图见图4。

图4侧扫声呐水平波束及声图

实孔径侧扫声呐技术特性可归纳为水平波束恒定角分辨率,它与对波长归一化的阵长成反比,θ==λ/L。其中,阵元或天线水平长度为L;工作频率时,波长为λ。距离增加时,水平线分辨率降低,δ==R×θ==R×(λ/L)。

合成孔径(侧扫)声呐(SAS)与合成孔径侧视雷达类似:利用小孔径水声换能器,在直线运动轨迹上均速移动,并在确定位置顺序发射,接收并存储回波信号。根据空间位置和相位关系对不同位置的回波信号进行相干叠加处理,合成虚拟大孔径的基阵,从而获得沿运动方向的高分辨率。与合成孔径侧视雷达相同,合成孔径(侧扫)声呐沿运动方向的水平线分辨率为θsyn=L/2,其中,L为基阵长度。该水平线分辨率与频率无关,可采用低频工作;且与距离无关。

雷达应用电磁波,在空气中的传播速度约为300000km/s;声呐应用声波,在水中的传播速度仅为c=1.5km/s。工作距离为R、达到运动速度v时,多接收子阵合成孔径声呐基阵的物理长度最小为L=4vR/c,每一接收子阵的水平宽度为方位向分辨率的两倍。与实孔径声呐比较,种种这些因素使得合成孔径声呐的基阵体积大、质量大,系统复杂程度高。

在复杂多变的海洋环境中,拖体不可能严格地沿直线航迹匀速运动,运动误差如图5所示。

图5 合成孔径(侧扫) 声呐运动误差

合成孔径成像要求运动误差<±(λ/8~λ/4),λ100kHz≈15mm,λ10kHz≈150mm。对运动误差的要求更增加了合成孔径(侧扫)声呐的系统复杂性。

早在20世纪70年代中期,合成孔径技术就已经尝试用于侧扫声呐。在1975年,Cutrona提出了合成孔径声呐的一种设计程序,建议采用多波束系统,以提高拖曳方向采样率。大约在同时期,Williams进行了合成孔径声呐拖曳试验。

受应用环境物理参数制约,合成孔径声呐的研发与应用滞后雷达多年。应用需求不迫切,也延缓了合成孔径声呐的研发。一份报告指出:早期水雷对抗的目的是检测,识别大型号、几何形状简单的水雷,如2m长的圆柱体目标。在当时的态势下,水雷对抗舰艇上装备的声呐设备在大多情况已满足需求。因而,相对复杂的SAS系统并未受到充分关注。

当水雷对抗的战略战术重点转移至较浅的近沿海水域,对抗目标物为较小型号、更为隐蔽的水雷及机动武器时,新的需求要求声呐分辨率大幅提高。水下无人航行器(UUV)或自治水下航行器(AUV)的研发及日益拓展的应用,为合成孔径声呐提供了比水面船只拖曳的拖体更为稳定、可靠的载体,也促进了合成孔径声呐系统的性能改进及广泛应用。

⒈NURC浅水合成孔径声呐

北约海底研究中心(NURC)是北大西洋公约组织(NATO)下属的三个研究与技术机构之一,负责NATO的海上研发,支持NATO的海上作业需求。

NURC在1998年启动了水雷对抗合成孔径声呐的研发项目,于2002年按NURC的高水平合成孔径声呐系统技术指标进行了国际招标。2003年1月,Thales公司中标,按NURC设计指标研制SAS系统;Bluefin公司提供AUV,IXSEA公司提供惯导系统。2006年6月,在马里纳迪卡拉拉(MarinadiCarrara)区域完成了水上实验。NURC完成的浅水SAS的载体是Bluefin-21,直径0.53m,长3.5m,由Bluefin公司批量生产,供应市场;该SAS的工作频率为270kHz~330kHz;由36个主接收阵元组成,总长1.2m;沿运动方向的水平分辨率为1.6cm;运动补偿方案为罗经稳定DPC(G-DPC)导航系统。

⒉CSSRELIANT/SAS21系统

沿海系统站(CoastalSystemsStation,CSS)位于美国佛罗里达州巴拿马市圣安德鲁湾,是美国海军的一个重要实验室。其任务为水雷战、两栖战、海上特种战、潜水及生命支持的研究、开发、测试及评估,还包括沿海军事行动及其他受到特别关注的先进对抗策略研究。

CSS在2003年的报告中指出:合成孔径声呐、水下自治潜器是水下研究与开发中最具有挑战性的两个项目,这两个项目的有机结合将提供能力超强、应用广泛的水下成像系统。当时,已有数个这样的项目在实施,大多为军事应用。CSS用自已开发的SAS系统与BluefinAUV集成,在2003年完成了初步实验。

CSS的AUV/合成孔径声呐系统名为RELIANT/SAS21系统,据称是第一个结合了AUV及SAS技术的水雷对抗实验系统。其载体AUV的型号是Reliant,由Bluefin公司开发,长约3m,直径约0.53m。

SAS21系统双侧、双频同时工作,低频为15kHz~32kHz,高频为165kHz~195kHz。高低频发射波形与功率独立编程控制。低频分辨率为7:62cm×7:62cm;高频分辨率为2:54cm×2:54cm。

⒊HISAS1030+HUGIN1000MRAUV

HISAS1030是KongsbergMaritime(KM)公司在原型机“Sensotech”的基础上研发的多子阵干涉合成孔径声呐,适装于AUV。其主要技术指标为分辨率优于5cm×5cm(理论值2cm×2cm);速度为2m/s时,工作距离为200m,速度为1.5m/s时,工作距离为275m;干涉测深分辨率为5cm×5cm~50cm×50cm;频率范围为60kHz~120kHz;带宽为50kHz。2008年2月,在挪威奥斯陆海湾进行了海试,水深50m~100m,AUV高度约为25m。

五、合成孔径聚焦技术在无损检测及医学成像上的发展

自20世纪60年代末及70年代初,同样是为了改善沿换能器移动方向的分辨率,合成孔径原理就已经试图应用于超声成像。在20世纪七八十年代,合成孔径主要是用于无损检测,采用收发共置换能器,如图6所示。

图6 收发共置换能器无损检测A-扫描数据采集

合成孔径聚焦技术(SAFT)利用机电扫描系统,控制换能器沿预定路径移动,在预定位置发射并接收试样中缺陷反射的回波信号。换能器位置、发射信号及回波信号波形全部存储在系统中。合成孔径聚焦处理程序在设定的深度内对回波信号做线聚焦(2D-SAFT)或点聚焦(3D-SAFT)处理。2D-SAFT的信噪比可以提高8~10dB,3D-SAFT可以提高16~18dB。

20世纪八九十年代,SAFT主要用于焊缝无损检测,还可用于薄壁及厚壁部件无损检测。图7是一个非常厚的部件,壁厚325mm。采用2MHz横波斜探头,探测到75mm深的裂隙。45◦斜入射探头沿钻孔内壁扫描,裂隙在外壁。经破坏性探查核实,裂隙深度与SAFT-成像结果符合,误差±2mm。

图7 中心钻孔件与裂隙SAFT-成像

换能器线阵应用到合成孔径超声成像后,有不同的实现方式。最简单的系统是合成孔径聚焦方式。其模式如图8所示,换能器线阵有N个阵元,每次只激活一个阵元发射,接收回波信号并存储在系统中。依次由阵元1至N重复N次后,由系统中调取数据相干叠加,得到高分辨声图。

图8 合成孔径聚焦的发射及接收

为了提高信噪比,每次可以激活M>1个阵元,称为多阵元合成孔径聚焦(M-SAF),其模式如图9所示。

图9 多阵元合成孔径聚焦的发射及接收(M=K)

发射时只激活一个阵元,线阵中的全部阵元接收回波,称为“发射合成孔径”(STA),其模式如图10所示。

图10 发射合成孔径的发射及接收

为了提高声图刷新率,可以应用“稀疏发射合成孔径(SparseSTA)”模式,其模式如图11所示。稀疏发射合成孔径模式在每次发射时,激活N/M>1个阵元,全部阵元接收回波信号。一帧数据采样结束后,调取全部M×N个回波信号用于重建声图。

图11 稀疏发射合成孔径的发射及接收

接收合成孔径(SRA)的模式如图12所示。发射时,激活全部阵元;接收时,将线阵分为Ns=N/KR个子阵。每发射一次,一个接收子阵将KR个阵元接收到的回波信号叠加并存储。然后,向同方向发射同样的脉冲信号,其他子阵按序接收回波,叠加并存储。最后,调出所有子阵的回波信号,相干处理形成高分辨声图。

图12 接收合成孔径的发射及接收

六、结论

自20世纪50年代至今,合成孔径在雷达地面、海面成像中的研发及应用已经进入了黄金时代,实际分辨率远远超出了初期的设想。但是,系统误差,尤其是机载雷达运动误差降低了实际能达到的分辨能力。受多变的海洋环境影响,运动误差检测与补偿对提高合成孔径声呐的实际分辨率尤为重要,始终是受到关注的研发课题。自20世纪七八十年代以来,合成孔径成像已应用到无损检测及医疗诊断方面,有效地提高了超声成像的分辨率及信噪比,其研发及应用推广受到了多方关注。此外,在合成孔径技术的各方面应用中,3D-成像及目标自动识别与分类都是研究热点。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 雷达
    +关注

    关注

    50

    文章

    2928

    浏览量

    117454
  • 合成孔径成像

    关注

    0

    文章

    2

    浏览量

    6687

原文标题:合成孔径成像的应用及发展

文章出处:【微信号:mwrfnet,微信公众号:微波射频网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    合成孔径雷达(SAR)系统设计

    合成孔径雷达 (SAR) 是一种高分辨机载和星载遥感技术,用于对地形等场景上的远程目标进行成像
    的头像 发表于 12-18 16:31 2407次阅读
    <b class='flag-5'>合成孔径</b>雷达(SAR)系统设计

    合成孔径雷达的工作原理是什么?

    合成孔径雷达(Synthetic Aperture Radar,SAR),又译成合成口径雷达或合成开口雷达,属于一种微波成像雷达,也是一种可以产生高分辨率图像的机载雷达或星载雷达。
    发表于 04-08 09:01

    怎么实现合成孔径雷达卫星电磁兼容设计?

    合成孔径雷达(SAR)是合成孔径雷达卫星的主要有效载荷,能产生更高的分辨率。本文介绍了合成孔径雷达卫星的EMC设计要点,包括接地、屏蔽以及接收机、发射机EMC设计等,在实现功能的同时,运行稳定可靠。
    发表于 05-26 06:31

    合成孔径雷达转发式干扰分析

    转发式干扰是针对合成孔径雷达的一种有效干扰手段。该文介绍了合成孔径雷达转发式干扰的原理,讨论并分析了虚假目标的生成位置以及虚假目标的成像质量。并针对实际工程中
    发表于 02-09 14:11 14次下载

    合成孔径雷达卫星

    合成孔径雷达卫星 合成孔径雷达卫星的总体设计 星载SAR原理 星载SAR设计原理 星载SAR天线系统 .................
    发表于 08-31 16:19 41次下载

    旋转目标干涉逆合成孔径三维成像技术

    旋转目标干涉逆合成孔径三维成像技术 本文根据旋转目标微波成像原理,导出了采用干涉逆合成孔径(INISAR)处理获取第三维高程信息的旋转目标INISAR
    发表于 10-21 18:45 1369次阅读
    旋转目标干涉逆<b class='flag-5'>合成孔径</b>三维<b class='flag-5'>成像</b>技术

    干涉合成孔径雷达成像技术

    介绍了合成孔径雷达的成像原理,简述了InSAR的测高步骤,重点论述了去平地效应和两种相位解缠算法,最后分别利用分支截断法和最小二乘法两种解缠算法,进行了高斯山模型的解缠绕仿真
    发表于 03-23 11:13 41次下载
    干涉<b class='flag-5'>合成孔径雷达成像</b>技术

    超宽带合成孔径雷达

    超宽带合成孔径雷达,有需要的可以下来看看。
    发表于 12-28 10:16 14次下载

    合成孔径雷达的研究热点解析

    合成孔径雷达(Synthetic Aperture Radar),是利用合成孔径原理,实现高分辨的微波成像,具备全天时、全天候、高分辨、大幅宽等多种特点,最初主要是机载、星载平台,随着技术的
    发表于 05-04 14:54 2200次阅读
    <b class='flag-5'>合成孔径</b>雷达的研究热点解析

    合成孔径雷达系统的接口实现与设计

    机载合成孔径雷达(Synthetic Aperture Radar,简称SAR)是以“合成孔径”原理和脉冲压缩技术为理论基础,以高速数字处理和精确运动补偿为前提条件的高分辨率成像雷达。对于机载
    的头像 发表于 04-25 08:03 2581次阅读

    合成孔径雷达的工作原理_合成孔径雷达的特点作用

    合成孔径雷达就是利用雷达与目标的相对运动把尺寸较小的真实天线孔径用数据处理的方法合成一较大的等效天线孔径的雷达。合成孔径雷达的特点是分辨率高
    的头像 发表于 01-20 16:20 3.4w次阅读

    合成孔径的雷达研究热点

    来源:RF技术社区  本文来自电子万花筒 合成孔径雷达 (Synthetic Aperture Radar),是利用合成孔径原理,实现高分辨的微波成像,具备全天时、全天候、高分辨、大幅宽等多种特点
    的头像 发表于 02-07 18:12 1028次阅读

    合成孔径雷达利用微波成像观测地表信息

    与光学遥感观测利用可见光探测成像不同,合成孔径雷达利用微波成像,具有全天时、全天候监测能力,能够透过云、雨、雾、沙尘暴等,直接观测地表信息。
    的头像 发表于 03-11 14:53 1904次阅读

    基于俯仰信息的车载合成孔径雷达成像方法

    基于俯仰信息的车载合成孔径雷达成像方法
    发表于 07-05 16:01 7次下载

    运用Versal ACAP开发合成孔径与平面波超声成像

    电子发烧友网站提供《运用Versal ACAP开发合成孔径与平面波超声成像.pdf》资料免费下载
    发表于 09-13 10:23 0次下载
    运用Versal ACAP开发<b class='flag-5'>合成孔径</b>与平面波超声<b class='flag-5'>成像</b>