0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

当前的AI芯片现状分析

我快闭嘴 来源:半导体行业观察 作者:半导体行业观察 2020-09-27 14:01 次阅读

过去两年,随着AI的兴起,还有有志于做人工智能芯片的企业开始在自有的CPU中嵌入类似寒武纪品牌的NPU,或者如华为这样自研NPU。蜂拥而起的AI造芯潮使得很多人认为在这个新兴的AI市场,Arm已经丧失了先机,甚至有激进者认为Arm在这个即将爆发的人工智能市场将毫无建树。

但在2018年二月公布代号为Project Trillium的机器学习计划,2019年10月发布包括Ethos N77/N57/N37,并于日前发布全新的Ethos U55 NPU之后,这家IP巨头的AI布局开始逐渐浮出水面。

在谈Arm的AI芯片布局之前,我们先来了解一下Arm以及当前的AI芯片现状。

AI时代错失先机

这家在英国成立,最终被软银巨额收购的芯片公司是IP领域的绝对龙头。

如果统计处理器市场,特别是嵌入式处理器,Arm的IP是当中毫无疑问的大赢家。以大家熟悉的智能手机市场为例,无论是国际知名的苹果和三星,还是国内的华为、小米,他们使用的处理器无一例外都是基于Arm-Cortex-A系列IP设计。

再看嵌入式MCU,因为ST、NXP瑞萨的力拱,以及一众本土厂商的加入,Arm MCU的市场在过去多年里也节节攀升。关于Arm MCU的份额,并不能找到相关数据,但从Arm公司2017年的一份PPT中我们可以看到,物联网设备中,有90%的控制器都是基于Arm产品设计的,微控制器市场,Arm的份额也高达20%。如果统计整个带有处理器的芯片,则使用Arm相关IP的产品占比达到39%。

Arm在不同市场的份额和机会(source:Arm)此外,Arm还有GPU和DPU等一系列IP在市场上表现不错,这也帮助Arm获得了不错的市场份额。

据IP Nest的统计数据显示,整个IP市场2018年的总值为36.02亿美元,当中虽然Arm的份额连续第三年下滑,但是他们的占有率还是高达44.7%,遥遥领先于第二位。IP Nest在报告中还谈到,高端产品的授权转向了架构授权,而最低端的处理器则开始拥抱RISC-V。在2018年的IP市场里,还有一个值得关注的点,那就是机器学习和其他专用架构产品的兴起。

但在AI发展的前几年,Arm在这方面是缺失的。

2018年的IP供应商排名回看过去几年的AI芯片发展,云端市场是GPU、ASICFPGA这些大规模芯片的自留地,这是大部分的芯片厂商所无法设计的,但在终端的推理市场,则百花盛开,百家争鸣。有厂商一开始就通过自研去步入这个领域(如苹果),在MCU市场,ST也推出了代号为Orlando Project的专用卷积神经网络加速器;有厂商则依靠第三方IP去进攻这个市场。这就催生了寒武纪和耐能一些新兴的NPU IP供应商,也让一些老牌厂商的产品在AI加速器这个市场寻找了新的机遇,如CEVACadenceTensilica)和Verisilicon就是当中的代表。

根据ABIRe-search预测,2024年,终端AI芯片市场规模将增长至710亿美元,2019年至2024年间的年复合增长率将达31%。考虑到AIoT市场的潜力,当中必然有相当大一部分营收来自于Arm MCU供应商。那就意味着如果Arm握不住这个市场,他们将会错失一大块蛋糕。甚至有可能在一些集成了RISC-V 与加速器的MCU的倒逼下,连本身领先的Cortex-M MCU城池也失守。

为此,Arm加速AI部署刻不容缓,这就促使Arm在昨日放了个大招。

投下NPU重磅炸弹

其实Arm NPU并不是什么新鲜事物。在文章开头我们已经说到,Arm在去年就推出了其Ethos N77/N57/N37系列NPU。Arm的这个家族的NPU是瞄准手机、AR/VR智能监控等市场。

但很显然,Arm的NPU在这些市场几无胜算。

Arm Ethos N77/N57/N37家族首先看手机市场,盘点现在的手机处理器厂商华为、高通、苹果、三星、MTK和展锐,除了展锐授权了Imagination的AI加速器之外之外,其他所有的厂商都是使用的自研NPU或者使用异构的硬件来做AI加速,当中的华为和MTK等NPU忠实玩家甚至都已经将其AI加速器推进到第三代。在这个发展过程中,他们也同步发展了其AI软件和生态,这就让他们没有任何理由转向Arm的加速器。上图的其他市场大多也有这种境况。

但在未来巨大的市场当中,还有一个目前还没有被大幅挖掘的金矿,那就是低功耗的终端应用。这也是Arm Ethos U55所瞄准的目标。而据行业的专家告诉半导体行业观察记者,AI加速器能否应用到超低功耗的物联网市场,首先要关注的一点就是它的功耗表现,这也是Arm在致力于解决的。

日前发布的Ethos U55 和与之搭配的Cortex-M55则是Arm在这个市场的小试牛刀。

Arm为终端AI带来的全新方案Arm的官方表示,新增的Cortex-M55是Arm历来AI能力最为强大的Cortex-M处理器,也是首款基于Armv8.1-M架构、内建Arm Helium向量处理技术的处理器,它可以大幅提升DSP与ML的性能,同时更省电。Arm同时指出,在这个新的处理器上,客户可以使用Arm Custom Instructions (Arm自定义指令集)延伸处理器的能力,对特定工作负载进行优化。来到Ethos-U55,这是一个可从32个MAC扩展到256个MAC的micro NPU,在与Cortex-M55耦合之后,能够为微控制器带来480倍的机器学习性能飞跃。

Arm方面还强调,这个全新搭配还得到了Cortex-M软件开发工具链的支持,这就使得其针对传统DSP与ML等工作负载,有了一致的开发流程;同时从TensorFlow Lite Micro开始,能针对先进机器学习框架进行特定的整合与优化,确保开发人员拥有无缝的开发体验,并能够在任何一种Cortex-M与Ethos-U55的配置上,获取最佳性能。

Arm首款microNPU业内专家也告诉半导体行业观察记者,考虑到Arm当前的地位和名声,这套方案带给市场的影响是显而易见的。Cortex-M方面自不用多说,这是他们在嵌入式市场安身立命的重要武器。而来到NPU方面,也同样亮点不少。一方面,这是一个带两级SRAM,L2 SRAM可扩展到数MB的产品;另一方面,Ethos-U55自带DMA+control unit, 可完成异步数据流管理;第三,Ethos-U55的Weight Decoder可将神经网络中的weights进行压缩,提高带宽;第四,这个NPU还有针对element wise运算的特殊加速单元,能帮助矩阵运算。

“还有一点,Arm CMSIS-NN所积聚的生态,也会是一个重要的X因素”,业内专家强调。

据介绍,所谓CMSIS的全称是Cortex Microcontroller Software Interface Standard (Cortex微处理器软件接口标准),这是Arm为了解决微处理器生态中软件无法兼容的问题而推出的。而CMSIS-NN则是Arm为了缓解微处理器神经网络相关软件优化压力而推出的CMSIS新成员。

CMSIS-NN的框架图行业专家表示,在Arm刚推出这个库的时候,彼时的Arm Cortex-M还不能跑出让人眼前一亮的结果。但因为Arm强大的号召力,即使很多厂商并不知道它的真正用途,但都纷纷将其融入了其OS和生态里。

而在上述的M55和U55出来以后,Arm的计划似乎也明朗了起来。

胜负未知

也许Arm的想法是这样的——我们有足够多的MCU客户,有足够多终端用户,过去的十几年里,我们也构建了无可比拟的生态,只要我们把这套工具磨利,就能让大家投奔我门下,让Arm在嵌入式AI领域重现Cortex-A和Cortex-M时代的辉煌。

但市场已经不再是以前的市场。

我们可以看到,无论是Cortex-A所支持的AP或者是Cortex-M所驱动的MCU生态,他们所面对的都是相对单一的需求。换而言之打造一些通用化的方案就能通吃市场。但进入了当前的AIoT市场,市场需求千差万别,定制化或者会更为一股重要的趋势,这也是Arm Custom Instructions面世的原因之一。

更重要的是,Arm不但迎来了新的技术,还迎来了更强悍的竞争对手。

首先,以大家过去一两年常谈的RISC-V为例,因为其独特的开源特性和成本优势,很多分析人士都认为其可以在AIoT时代大展拳脚。而在最近,RISC-V的领先厂商SiFive也宣布,将携手IP厂商CEVA,在CPU、DSP、AI处理器和软件方面进行合作,帮助芯片企业开发出大批量面向智能家居、汽车、机器人、安保、增强现实、工业和物联等一系列边缘智能SoC。在官方新闻稿里,他们也强调了面向特定领域的超低功耗Edge AI处理器,这正是Arm新产品所聚焦的。

其次,Lattice这些小容量FPGA供应商,也无限看好这个市场。Lattice方面表示,基于他们的Lattice sensAI可以帮助OEM厂商为下一代毫瓦级智能设备赋予AI和ML功能。对于Arm阵型来说,这也是一个潜在的挑战者。

第三,类似Greenwaves这些初创企业,也成为嵌入式AI市场的一个不确定因素。资料显示,他们最新推出的GAP 9可提供41.6 GB /秒的峰值群集内存带宽和高达50 GOPS的组合计算能力,而总功耗仅仅为50mW,再搭配其完整的工具,这也成为了嵌入式AI市场一股不可忽视的势力。

第四,在Arm芯片阵型里,有一些大客户在研发自己的加速器方案,如瑞萨的动态可配置处理器 (DRP) 技术就是当中一个代表。再搭配其SOTB制程来降低功耗,这就让日本巨头的嵌入式AI方案变得非常有竞争力。

最后,Arm的嵌入式AI方案是否真的能如他们所说,减轻了很多客户的开发工作?这是一个值得推敲的问题。行业专家表示,在嵌入式AI这个领域,其实大家在软件开发上面的难度差不多,迄今为止也没有人能建立其一个很强大的生态。

而对于那些购买了Arm NPU IP的人,他们除了需要面对数据搬运的挑战外,还要直面是否有完整的工具,能很好帮助他们完成模型训练到片上移植的过程。最重要的一点,Arm的这些新IP授权费用怎么收?这也是一个重要考量点。但即使如此,Arm也迈开了嵌入式AI市场的一大步。

从分析师预测看来,AIoT是发展的必然趋势,这也是一个多个阵营虎视眈眈,但谁都没有把握稳赢的市场。作为一个拥用强大的生态合作伙伴的Arm,能否凭借新产品成为这个赛道的领跑者,尚待观察。但对他们来说,这关键一战的冲锋号已经吹响。
责任编辑:tzh

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    19286

    浏览量

    229845
  • 芯片
    +关注

    关注

    455

    文章

    50816

    浏览量

    423636
  • ARM
    ARM
    +关注

    关注

    134

    文章

    9097

    浏览量

    367562
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10863

    浏览量

    211768
收藏 人收藏

    评论

    相关推荐

    企业AI开发环境怎么样

    随着AI技术的不断成熟和应用场景的日益丰富,企业对于构建高效、稳定、可扩展的AI开发环境的需求愈发迫切。下面,AI部落小编将从多个维度,探讨当前企业
    的头像 发表于 11-11 09:57 163次阅读

    AI模型市场分析

    随着人工智能技术的快速发展,AI模型已成为全球科技竞争的新高地、未来产业的新赛道以及经济发展的新引擎。下面,AI部落小编分析当前AI模型市
    的头像 发表于 11-01 09:51 157次阅读

    浅谈虚拟电厂标准化现状与需求分析

    摘要: 虚拟电厂是新型电力系统建设的典型实践。针对当前虚拟电厂适用技术标准较少、标准体系建设滞后的问题,对虚拟电厂相关标准进行收集、梳理,从基础通用、规划建设、运行维护、支撑技术和能效评估等方面分析
    的头像 发表于 10-16 15:35 440次阅读
    浅谈虚拟电厂标准化<b class='flag-5'>现状</b>与需求<b class='flag-5'>分析</b>

    如今火热的AI芯片到底是什么

    众所周知,人工智能的三大基础要素是数据、算法和算力,而这三大要素的核心就是AI芯片技术。随着各项基于AIGC前沿科技的广泛应用,AI对于算力的要求开始不断地快速攀升。特别是深度学习成为当前
    的头像 发表于 09-06 10:10 681次阅读

    AI芯片的混合精度计算与灵活可扩展

    电子发烧友网报道(文/李弯弯)当前AI技术和应用蓬勃发展,其中离不开AI芯片的支持。AI芯片
    的头像 发表于 08-23 00:08 4832次阅读

    自动驾驶三大主流芯片架构分析

    当前主流的AI芯片主要分为三类,GPU、FPGA、ASIC。GPU、FPGA均是前期较为成熟的芯片架构,属于通用型芯片。ASIC属于为
    的头像 发表于 08-19 17:11 1628次阅读
    自动驾驶三大主流<b class='flag-5'>芯片</b>架构<b class='flag-5'>分析</b>

    3D DRAM内嵌AI芯片AI计算性能暴增

    电子发烧友网报道(文/黄晶晶)尽管当前AI训练主要采用GPU+HBM的方案,不过一些新的技术仍然希望进一步打破存储数据传输带来的瓶颈问题。最近,NEO半导体宣布开发其3D X-AI芯片
    的头像 发表于 08-16 00:08 3215次阅读
    3D DRAM内嵌<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>,<b class='flag-5'>AI</b>计算性能暴增

    国内芯片行业的过去、现状与未来:EVASH Ultra EEPROM的视角

    国内芯片行业的过去、现状与未来:EVASH Ultra EEPROM的视角
    的头像 发表于 08-12 17:51 658次阅读

    AI芯片会导元件中间商消失吗?

    元件AI芯片
    芯广场
    发布于 :2024年06月19日 18:10:01

    AI芯片哪里买?

    AI芯片
    芯广场
    发布于 :2024年05月31日 16:58:19

    risc-v多核芯片AI方面的应用

    RISC-V多核芯片AI方面的应用主要体现在其低功耗、低成本、灵活可扩展以及能够更好地适应AI算法的不同需求等特点上。 首先,RISC-V适合用于高效设计实现,其内核面积更小,功耗更低,使得它能
    发表于 04-28 09:20

    AI芯片未来会控制这个世界吗?

    AI芯片行业资讯
    芯广场
    发布于 :2024年03月27日 18:21:28

    使用cube-AI分析模型时报错的原因有哪些?

    使用cube-AI分析模型时报错,该模型是pytorch的cnn转化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.ai
    发表于 03-14 07:09

    AI芯片短缺已影响超微电脑

    AI芯片行业芯事
    深圳市浮思特科技有限公司
    发布于 :2024年02月21日 10:18:59

    英伟达将用AI设计AI芯片

    AI芯片行业资讯
    深圳市浮思特科技有限公司
    发布于 :2024年02月19日 17:54:43