0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

PECVD工艺参数对二氧化硅薄膜致密性的影响

牵手一起梦 来源:纳米防水 作者:佚名 2020-09-29 15:07 次阅读

背景二氧化硅薄膜具有硬度大、防腐蚀性、耐潮湿性和介电性能强等优点,因此二氧化硅薄膜在半导体行业中可以用作器件的保护层、钝化层、隔离层等。

PECVD即等离子体增强化学的气相沉积法是借助微波射频等使含有薄膜成分原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。由于PECVD可以在低温条件下较快生长二氧化硅,所以用PECVD生长二氧化硅薄膜被广泛应用于半导体光电子器件、集成电路等制造工艺中,而二氧化硅薄膜的致密性的好坏就直接影响着器件的性能。本次实验为利用BOE溶液测试改变PECVD工艺参数对二氧化硅薄膜致密性的影响。

实验

1、实验设备:牛津Oxford PlasmaPro®100 PECVD。

2、实验衬底:硅片。

3、实验步骤:(1)用PECVD设备在硅片上生长不同条件的二氧化硅薄膜;(2)用椭偏仪分别测量各个条件生长的二氧化硅薄膜厚度并记录;(3)用BOE溶液对所有实验片进行腐蚀;(4)用椭偏仪分别测量各个条件生长的二氧化硅薄膜厚度并记录;(5)整理所得数据。

数据整理1、不同压力对二氧化硅薄膜的影响由以下图表可看出随着压力的增高,对应反应气体浓度增加,所以二氧化硅沉积速率变快;由于较低压力下,机械泵可迅速将反应室中的氮气和氢气抽走,使生成的二氧化硅薄膜中氮氢含量更低,致密性更好,从表格中可看出致密性在600~800mt条件下为最佳。

沉积速率曲线 腐蚀速率曲线

2、不同射频功率对二氧化硅薄膜的影响

由以下图表可看出随着射频功率的增高,反应气体中活性离子能量增加,硅离子和氧离子结合更快,所以二氧化硅沉积速率变快;同时,生成的二氧化硅薄膜中氮氢含量更低,致密性更好,从图表中可看出致密性随射频功率提高而变好。

沉积速率曲线 腐蚀速率曲线

3、不同衬底温度对二氧化硅薄膜的影响

由以下图表可看出随着温度的增高,等压下对应反应气体浓度减小,所以二氧化硅沉积速率变慢;由于温度较高时,反应物更容易吸附,而且薄膜中含有的H更易参与反应释放,使生成的二氧化硅薄膜中氮氢含量更低且薄膜内缺陷较少,致密性更好,从图表中可看出致密性随衬底温度提高而变好。

沉积速率曲线 腐蚀速率曲线

结语以上实验采用BOE溶液腐蚀的方式,研究了压力、射频功率、衬底温度对PECVD生长的二氧化硅薄膜致密性的影响,得出了三组参数对致密性的影响趋势,改善了二氧化硅薄膜的致密性。随着半导体行业的发展,对器件性能的要求逐步提高,致密性好的二氧化硅可以提高半导体器件的性能,所以制备高致密性的二氧化硅薄膜势在必行。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5374

    文章

    11296

    浏览量

    360278
  • 半导体
    +关注

    关注

    334

    文章

    26830

    浏览量

    214046
  • 测量
    +关注

    关注

    10

    文章

    4730

    浏览量

    111046
收藏 人收藏

    评论

    相关推荐

    二氧化碳传感器

    光束结构.它只有测量光束,不能实现参比处理。为此该二氧化碳传感器采用了如下关键技术:  ①设计并采用了高红外光源反馈稳流电路。该电路提供一恒定的光源电流,稳定红外光源的输出功率。红外光源反馈稳流
    发表于 01-07 11:42

    6英寸半导体工艺代工服务

    (干法刻蚀硅)17、 RIE SiO2 (干法刻蚀二氧化硅)18、 RIE Si3N4 (干法刻蚀氮化硅)19、 RIE Al、AlN、Ti、TiN (干法刻蚀金属,包括干法刻蚀铝、干法刻蚀氮化
    发表于 01-07 16:15

    二氧化碳传感器的构成

    ,电化学式,色谱式,质谱式,红外光学式等。其中红外光学式二氧化碳传感器以其测量范围宽、灵敏度高、精度高、反应快、有良好的选择及能进行连续分析和自动控制等特点已经成为二氧化碳气体分析最常用的方法。  按照
    发表于 01-08 11:40

    二氧化碳传感器

    二氧化碳传感器通常是利用红外辐射的方式进行测量。由于二氧化碳对2.7、4.35和14.5波段处红外线有强烈的吸收,并且考虑到2.7和14.5两个吸收带都易受到水汽吸收的影响,因此通常选择4.35处
    发表于 09-14 22:32

    二氧化钛白色和黑色的区别

    `二氧化钛是一种高折射率材料,适于电子枪蒸镀,膜层致密,牢固,抗化学腐蚀。可分为白色和黑色。颜色的不同主要因为生产环境的因素,白色是在大气中烧结而成的,而黑色是在真空中烧结而成。在试用中,黑色比白色
    发表于 11-20 10:03

    二氧化碳致裂器

    煤层封孔二氧化碳爆破设备技术领域本机器新型涉及煤矿钻孔封堵爆裂技术领域,特别涉及煤层封孔二氧化碳爆破设备。​背景技术诈要爆破目前仍是煤矿开采的方法之一。诈要爆破威力大、作用猛,是典型的明伙爆破。但明
    发表于 07-25 07:52

    石灰石二氧化硅化验仪器设备系列

    `石灰石二氧化硅化验仪器设备系列 石灰石二氧化硅化验仪器设备系列 英特仪器测试石灰石硅含量仪器,检测石英砂二氧化硅的设备,化验石灰石二氧化硅的设备,石英砂硅铁检测仪,化验石灰石硅设备英
    发表于 03-11 11:24

    二氧化硅层在芯片中有何作用

    二氧化硅它是属于光纤的主要制作材料
    的头像 发表于 12-21 15:30 1.1w次阅读

    用磷酸揭示氮化硅二氧化硅的选择蚀刻机理

    关键词:氮化硅二氧化硅,磷酸,选择蚀刻,密度泛函理论,焦磷酸 介绍 信息技术给我们的现代社会带来了巨大的转变。为了提高信息技术器件的存储密度,我们华林科纳使用浅沟槽隔离技术将半导体制造成无漏
    发表于 12-28 16:38 6726次阅读
    用磷酸揭示氮<b class='flag-5'>化硅</b>对<b class='flag-5'>二氧化硅</b>的选择<b class='flag-5'>性</b>蚀刻机理

    化硅二氧化硅之间稳定性的刻蚀选择

    磷酸(H3PO4) -水(H2O)混合物在高温下已被使用多年来蚀刻对二氧化硅(二氧化硅)层有选择的氮化硅(Si3N4)。生产需要完全去除Si3N4,同时保持
    的头像 发表于 02-15 11:25 3119次阅读
    碳<b class='flag-5'>化硅</b>和<b class='flag-5'>二氧化硅</b>之间稳定性的刻蚀选择<b class='flag-5'>性</b>

    二氧化硅蚀刻标准操作程序研究报告

    缓冲氧化物蚀刻(BOE)或仅仅氢氟酸用于蚀刻二氧化硅在硅上晶片。 缓冲氧化蚀刻是氢氟酸和氟化铵的混合物。含氟化铵的蚀刻使硅表面具有原子平滑的表面高频。 由于这一过程中所涉及的酸具有很高的健康风险,建议用户使用在执行
    发表于 03-10 16:43 997次阅读
    <b class='flag-5'>二氧化硅</b>蚀刻标准操作程序研究报告

    用湿化学工艺制备的超薄氧化硅结构

    近十年来,湿化学法制备超薄二氧化硅/硅和超薄二氧化硅/硅结构的技术和研究取得了迅速发展。这种结构最重要是与大尺寸硅晶片上氧化物层的均匀生长有关。
    发表于 03-11 13:57 1001次阅读
    用湿化学<b class='flag-5'>工艺</b>制备的超薄<b class='flag-5'>氧化硅</b>结构

    在超临界二氧化碳中蚀刻氧化硅薄膜

    介绍 硅或二氧化硅已被用作牺牲层来制造独立式结构,例如微机电系统(MEMS)中的梁、悬臂和隔膜。传统的含水HF已经广泛用于蚀刻二氧化硅牺牲层,因为它成本低廉。然而,当具有高纵横比的结构在含水
    的头像 发表于 05-23 17:01 1156次阅读
    在超临界<b class='flag-5'>二氧化</b>碳中蚀刻<b class='flag-5'>氧化硅</b><b class='flag-5'>薄膜</b>

    镀膜使用二氧化硅的作用

    1. 引言 镀膜技术是一种在基材表面形成薄膜的技术,广泛应用于光学、电子、机械、建筑等领域。二氧化硅作为一种常见的无机材料,因其良好的光学性能、化学稳定性和机械强度,在镀膜技术中得到了广泛应用
    的头像 发表于 09-27 10:10 287次阅读

    二氧化硅薄膜实现增透的原因

    二氧化硅薄膜实现增透的原因主要涉及以下几个方面: 1. 折射率匹配 折射率特性 :二氧化硅(SiO₂)的折射率相对较低,这使得它能够作为一层有效的增透膜(或称为减反射膜)。当光线从一种介质进入另一种
    的头像 发表于 09-27 10:22 232次阅读