0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

最有效的去耦电容器放置指南

PCB打样 2020-09-29 19:57 次阅读

对于填充PCBA电子组件,就如何使用而言,最通用的组件可能是电容器。可以肯定的是,电容器在结构上是相当简单的组件。虽然,复杂度有所提高。这些包括能量密度远高于更常见的电解电容器的超级电容器(或超级电容器),以及石墨烯超级电容器可以做得很小。这些进步令人振奋,可能只会增加电容器目前在PCB布局中所起的重要作用。包括信号去耦。让我们为您的PCB布局定义最有益的去耦电容器放置准则,但首先,我们讨论去耦对电路板信号和电源完整性的重要性。

PCBA上的信号去耦

傅里叶分析(以法国数学家让·巴蒂斯特·约瑟夫,男爵·德·傅里叶命名),是分析周期函数最有用的工具之一,这些信号的幅度在固定周期内以固定周期变化。这种分析的强大之处在于它可用于将任何模拟信号分解为具有不同组成频率的一系列波形。这种隔离允许从原始信号中去除或过滤掉不需要频率的信号。该滤波是精确去耦的一个示例,为此目的而使用的电路由电阻,电感和/或电容的某种组合组成。

由于其固有的储能特性(阻止快速的电转换),因此可以将电容器用于 电源和瞬态去耦。PCBA(尤其是复杂的PCBA)可能具有多个电源输入,每个输入都需要进行调节以确保驱动的组件(通常是处理器,FPGA,其他IC放大器)接收正确的电压电平。去耦电容器用于通过提供电流以维持电压,同时在需要时将组件输出转换为合适的电平来执行此平滑功能。电容器还用于消除由于IC内逻辑门的恒定切换而可能在ACDC电源轨中发生的瞬变。去耦电容器有效的程度取决于您选择的类型,最重要的是取决于它们的放置。

信号和电源完整性的最佳去耦电容器放置指南

如上所述,去耦是基于频率的信号分解和隔离的一种形式。因此,有必要了解要隔离的频率或频率范围,以设计去耦解决方案。PCBA的最一般情况,可能会影响信号和电源完整性,是交流电与直流电的分离。通过遵循下面列出的一组良好的去耦电容器放置准则,可以最大程度地降低对电路板的配电网络(PDN)以及输入和输出信号的负面影响。

有效地放置去耦电容器

l在信号源附近放置电容器

去耦电容器应放置在离信号源尽可能近的位置。这意味着在IC的引脚处以及在连接器附近的输入和输出信号。

l串联放置电容器以输入和输出信号走线

为了消除输入和输出信号中的低频瞬变,电容应与走线串联放置。电容器将通过HF,同时阻止LFDC。此外,应将小电容用于HF瞬变,将大电容用于LF瞬变。

l将电容器并联放置在电源引脚和地上

与用于输入和输出信号路径的去耦相反,对于功率分配和接地,目标是消除交流或直流耦合。因此,电容器应与信号路径并联放置。

l将电容器与电阻并联,以减少HF EMI

去耦电容器也可以与电阻器并联使用,以在通过LFDC时去除多余的HF

l在接地层连接之前放置电容器

当使用过孔到达电源平面时,将电容器连接至组件引脚,然后再连接至过孔以确保电流流经该平面。

l在同一层的数字和模拟接地之间放置电容器

去耦电容器对于隔离模拟和数字返回也有效。这是通过在AC和数字之间连接一个电容器来实现的PCB接地。

与安置相结合,利用好 多信号板的接地技巧用于电源的最有效去耦。对于IC封装;例如BGA,可能需要使用狗骨形布线和过孔来使用去耦电容器。但是,如果电源和接地在内部球上彼此相邻布置,则可以通过微孔直接将其直接连接到电源和接地层。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 印制电路板
    +关注

    关注

    14

    文章

    952

    浏览量

    40698
  • PCB线路板
    +关注

    关注

    10

    文章

    433

    浏览量

    19850
  • PCB打样
    +关注

    关注

    17

    文章

    2968

    浏览量

    21652
  • 华秋DFM
    +关注

    关注

    20

    文章

    3493

    浏览量

    4374
收藏 人收藏

    评论

    相关推荐

    高频电容器的选择指南 如何测试电容器的好坏

    高频电容器的选择指南 1. 电容器的类型 高频电容器主要有陶瓷电容器、薄膜电容器和电解
    的头像 发表于 11-15 10:40 147次阅读

    PCM1704电容器能否以超低ESR电容器来进行替换?

    大家好! 产品说明书中对用于 PCM1704 的电容器规定如下: “建议使用容量较大的铝电解质电容器。” REF DC = 47uf SERVO DC = 47uf BPO DC
    发表于 11-08 06:46

    电容的工作原理和特性

    电容,也被称为退电容,是电路中装设在元件的电源端的电容。它的工作原理基于
    的头像 发表于 10-10 15:19 384次阅读

    超级电容器和普通电容器的区别

    电容器扮演着至关重要的角色。它们在电路中用于能量存储、滤波、耦合和等。随着技术的发展,超级电容器作为一种新型的电容器,因其独特的性能而
    的头像 发表于 09-27 10:27 716次阅读

    串联电容器和并联电容器的区别

    电容器是电子电路中常见的一种元件,它具有储存电荷的作用。在电路设计中,我们常常会遇到串联电容器和并联电容器这两种情况。串联电容器和并联电容器
    的头像 发表于 05-16 14:14 4121次阅读

    详解电容电容的PCB布局布线

    从电源上看,没有电容的时候如左侧的波形,加上了电容之后变成了右侧的样子,供电电压的波形变
    的头像 发表于 03-27 14:08 3250次阅读
    详解<b class='flag-5'>去</b><b class='flag-5'>耦</b><b class='flag-5'>电容</b>:<b class='flag-5'>去</b><b class='flag-5'>耦</b><b class='flag-5'>电容</b>的PCB布局布线

    什么是电容 有什么作用

    电容(decoupling)通常放置在芯片的电源引脚附近,用于滤除由于芯片自身用电过程中信号跳变产生的电源引脚对外的波形输出。 在数字电路中,当电路从一个状态转换为另一种状态时,会
    的头像 发表于 02-16 16:54 1940次阅读
    什么是<b class='flag-5'>去</b><b class='flag-5'>耦</b><b class='flag-5'>电容</b> 有什么作用

    电容器的作用及原理 电容器的功率是属于什么功率

    电容器是一种被广泛应用于电子电路中的被动元件。它具有存储电荷和能量的特性,可以在电子电路中起到多种作用。本文将详细介绍电容器的作用及其工作原理,并探讨电容器功率的性质。 一、电容器的作
    的头像 发表于 02-14 17:35 5076次阅读

    耦合和有什么区别,耦合电容电容的作用分别是什么?

    耦合和有什么区别,耦合电容电容的作用分别是什么,在电路中如何
    的头像 发表于 02-04 09:05 3564次阅读

    超级电容器与传统电容器的区别 影响超级电容器性能的因素

    超级电容器与传统电容器的区别 影响超级电容器性能的因素 在现代电子技术和能量储存领域,超级电容器(也称为超级电容)作为一种重要的储能装置备受
    的头像 发表于 02-02 10:28 3003次阅读

    用于连接去电容器的过孔配置

    解决上述问题的方法是提供能够提供瞬态电流的电荷源。这通常是通过将去电容器放置在非常靠近每个逻辑 IC 的位置来实现的。我们应该始终记住,电路电源布线仅补充
    发表于 01-18 15:25 672次阅读
    用于连接去<b class='flag-5'>耦</b><b class='flag-5'>电容器</b>的过孔配置

    陶瓷电容器和钽电容器介绍

    陶瓷电容器和钽电容器介绍
    的头像 发表于 12-13 15:45 578次阅读
    陶瓷<b class='flag-5'>电容器</b>和钽<b class='flag-5'>电容器</b>介绍

    引脚式电容器和贴片式电容器的区别?

    引脚式电容器和贴片式电容器的区别? 引脚式电容器和贴片式电容器是两种常见的电子元件,在电子设备中起着储能、滤波、耦合和
    的头像 发表于 12-07 14:40 761次阅读

    可调电容器之挑选指南

    可调电容器之挑选指南
    的头像 发表于 11-30 09:40 767次阅读
    可调<b class='flag-5'>电容器</b>之挑选<b class='flag-5'>指南</b>

    PCB电容怎么放置?怎么选择电容

    和抑制振荡。 在本文中,将详细讨论PCB电容放置和选择。 一、PCB
    的头像 发表于 11-29 11:03 1131次阅读