三、微热管可实现传热强化
微热管,是一种具有极高导热性能的传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到类似冰箱压缩机制冷的效果。具有很高的导热性、优良的等温性、热流密度可变性、热流方向酌可逆性、可远距离传热、恒温特性(可控热管)、热二极管与热开关性能等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。由于其特殊的传热特性,因而可控制管壁温度,避免露点腐蚀。微细热管与常规热管最大区别在于微热管内单位蒸汽流量的壁面比表面积提高,因而可实现传热的强化。
出于为电子器件冷却的目的,Cotter在1984年提出“微型热管”的概念以来,微型热管的结构经历了重力型、具有毛细芯的单根热管,到具有一簇平行独立微槽道的平板热管,进而发展到内部槽道簇之间通过蒸汽空间相互连通的形式。近十几年来,用于冷却电子元器件的微热管技术得到了很大的发展,国内外有许多学者进行了研究。
从传热观点看,微细热管与常规热管最大的区别在于微热管内单位蒸汽流量的壁面比表面积大大提高,因而可以实现传热的强化。平板微热管阵列(micro- heatpipearray),即将多个同时形成的、彼此完全独立的微细热管组合在一起(而不仅仅是微通道阵列热管),各个微细热管间不连通,且每个微热管内表面可带有微槽群等强化换热的微结构。这样的平板微热管阵列与现有的平板热管和单根微热管相比,特点在于:第一,多根微热管并联解决了微热管由于微尺度造成的热输运能力小的问题;第二,内部的结构使得相变换热面积大大增加。因为微热管之间的铝质壁面具有很好的导热性能,能够将加热面的部分热量传导到与其相对的微槽面上,在整个微热管的周面都有相变发生。无论蒸发段还是冷凝段,单位蒸汽流通量的散热能力得到极大强化。第三,微细热管之间的间壁在结构上起到了“加强筋”的作用,大大增强了平板微热管阵列的承压能力。第四,平板微热管阵列的外形扁平,能够方便地与换热面贴合,克服了常规圆形截面的重力热管需要增加特殊结构才能与换热面紧密贴合的缺点,减小了界面接触热阻。
平板微热管阵列材料为铝合金,宽度、长度、厚度可任意调整,内部有一定数量和尺寸相同的、并排排列彼此独立的微细热管,每个微热管内有微槽群结构。这种结构使得平板微热管阵列具有很高的可靠性,即使出现其中某个微热管损坏的情况,其他独立的微热管仍然可以正常工作,因此平板微热管阵列的可靠性远远高于连通结构热管的可靠性。
平板微热管阵列是种具有超导热性能的导热元件,其表观热传导率是同样金属材质热传导率的5000倍以上,是具有同样断面积的传统圆形热管的换热能力的10 倍。平板内的每根微热管独立工作,且承压能力是传统圆形热管的10倍以上,很难发生机械性破坏每米温差小于1摄氏度,几乎可以被认为是一个等温体;微热管阵列的放热面积大,铝翅片、基板及热管的温度基本一致。利用平板微热管阵列技术,每平米为200~400根,独立运行的微热管是高传热性、高可靠性微热管阵列应具有承压能力强、能够与换热表面很好贴合、热输运能力强、性价比高等特点。能够解决目前电子芯片散热、LED灯散热等领域内高热流密度的散热问题。
四、微热管阵列具有高效吸热性
微热管阵列因为同时具有高效吸热、传输及高效放热特性,因此可以基本解决各种LED的散热难题。热管的性能表观评价方法主要是测量热管沿轴向的温度均匀性。热管的响应时间则取决于其材料(包括金属材料及工质)的热容。为了评价制作的平板微热管阵列,用50cm长的热管进行了均温性及热响应时间的测试。实验时在热管垂直方向布置4根T型热电偶,分别位于热管的蒸发段、绝热段和冷凝段。
实验数据表明,平板微热管阵列具有很好的均温性。从蒸发段到冷凝段的温度差在1℃以内,热响应时间在80s以内。通过对基于平板微热管阵列的功率型LED照明装置的几种不同组合形式进行试验测试,分析了平板微热管阵列与散热器的接触面积、微热管阵列热运输长度、接触热阻对基于平板微热管阵列的功率型LED照明散热装置的影响,包括管板接触面积对装置的传热影响、接触热阻对平板微热管阵列LED传热装置的传热影响和U 形平板微热管阵列的LED照明散热装置的性能。
微热管可以随意组合成一定宽度的平板微热管阵列,且微热管可以任意弯折,且传热效果在较低的热流密度下无明显变化。U形微热管阵列是一种由实验证明传热性能良好的微热管阵列的弯折形式。微热管阵列因为同时具有高效吸热、传输及高效放热特性,且可柔性变形与翅片结合,因此可以基本解决各种LED的散热难题。其特点如下:
一是微热管阵列的蒸发换热部的最大换热能力可达到200W/cm;
二是高热传导率:是实心铝材的5000倍以上;
三是高可靠性:由于平板内的每根微热管独立工作,即使有一两根微热管破坏,其他微热管照样在发挥作用而不至于影响使用。况且,其承压能力是传统圆形热管的10倍以上,根本就很难发生机械性破坏;
四是高等温性:每米温差小于1℃,几乎可以被认为是一个等温体;
五是大面积接触:由于微热管阵列的放热面积大,可实现铝翅片、基板及热管的温度基本一致,几乎完全消除了“翅片效应”。
审核编辑黄昊宇
-
led
+关注
关注
240文章
23129浏览量
658312 -
散热
+关注
关注
3文章
495浏览量
31760
发布评论请先 登录
相关推荐
评论