0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Nature Materials:首次提出可粘附生物电子的概念

ExMh_zhishexues 来源:知社学术圈 作者:知社学术圈 2020-10-11 10:07 次阅读

全球每年有数百万台电子医疗设备植入到人体中,其中包括心脏起搏器,人工耳蜗和神经电刺激设备等。医生通常通过手术缝合的方式实现电子设备与组织的连接和集成。手术缝合需要精密的操作,但是仍然难以避免组织创伤,炎症反应,结疤,且难以实现连续贴合的界面。目前美国食品药品监督管理局(FDA)批准的电子设备大多与心脏或者神经组织集成,动态或柔软脆弱的组织特点使手术缝合更加困难。同时,现有的柔性电子器件通过范德华力或毛细作用实现集成。但是通常难以实现动态组织的长期集成。因此,亟待研发一种可靠的方法来实现体内组织与电子器件的有效集成。

南方科技大学郭传飞教授团队和麻省理工学院研究团队共同在今天发表的Nature Materials的文章中首次提出可粘附生物电子(Bioadhesive Electronics)的概念,并通过生物粘性电子界面(E-bioadhesive interface)来实现(图1)。生物粘性电子界面能够快速将电子设备与各种体内组织进行有效粘合,实现长期稳定的双向电信号的传导。并且具有与组织相匹配的高柔韧性和高生物相容性。活体动物实验证明了生物粘性电子界面有望发展成为一类普适性的方法,快速稳定的将电子医疗设备与人体组织进行功能性集成。此外,生物粘性电子界面能通过外界刺激脱粘附,实现植入设备的无创取回。

图1:生物组织与植入设备的集成方法。a 物理附着;b 手术缝合;c 生物粘性导电界面。 2020年9月28日,论文以“Electrical bioadhesive interface for bioelectronics”为题发表在Nature Materials杂志上 生物粘性电子界面的作用机理与性能

要实现长期稳定有效的人机电子界面,需要解决当前的材料和方法的几个主要的弊端:1)现有导电界面材料难以实现在湿润动态的体内环境中与组织或器官长期稳定集成;2)现有生物粘性材料在湿润环境中易溶胀,难以保持稳定的电学性能和与植入设备的粘附;3)不可降解的植入设备的取回往往需要二次手术,且伴有严重的组织创伤。

图2:生物粘性导电界面交联机理

图3:生物粘性导电界面的粘附性能 针对上述弊端,设计出生物粘性电子界面,使其具有高柔韧性和高吸湿性的聚丙烯酸-聚乙烯醇交联网络。当接触组织表面时,可以迅速吸收表面水分,同时通过物理交联(氢键和静电作用)瞬间(< 5 s)与组织进行粘合;随后预先接枝在聚丙烯酸网络上的NHS基团与组织或器件表面的氨基形成化学交联(图2)。生物粘性电子界面不但适用于心脏、皮肤、肌肉、神经组织等各类组织或器官,而且能够广泛应用于硅、聚酰亚胺、聚碳酸酯、聚甲基硅氧烷等构建器件的常用材料(图3)。例如在湿润动态的心脏组织表面,生物粘性电子界面能够实现高达110 kPa的剪切强度和420 J m-2的粘接韧性。  

图4:生物粘性导电界面的性能。a各向异性溶胀;b 导电性。 此外,设计引入了还原氧化石墨烯导电网络。由于石墨烯网络的引入,一方面使其具有稳定的导电性和电子注入容量,保证了电子器件与生物组织的双向电信号传导。另一方面,使干燥的生物粘性电子界面在与湿润组织粘合时,仅在垂直平面方向上吸水溶胀,保证了植入电子设备与生物组织长期稳定的粘合(图4)。同时,为了实现刺激脱粘附,进一步在高分子网络中设计引入了二硫键。通过引入生物相容性的碳酸氢钠和谷胱甘肽混合水溶液,能够分别破坏与组织表面的物理和化学交联,实现脱粘附和植入设备的无创取回。 生物粘性导电界面的应用

通过生物粘性导电界面,将柔性电极贴附在活体小鼠的心脏表面,能够稳定检测心外膜心电信号长达两周 (图5)。并且能够通过刺激脱粘附的方式,将电极从心脏表面无创取回。该方法简单高效,避免了缝合造成的的组织损伤,心律不齐等并发症。通过免疫组化和免疫荧光等多种方法进行分析,验证了生物粘性导电界面材料具有与FDA批准的金电极相当的生物相容性。

图5:生物粘性导电界面用于长期心外膜心电信号检测 展望

生物粘性导电界面的提出,实现了生物电子设备与多种体内组织的高强度粘合,双向电生理信号的传导以及无创的脱粘附。相较于传统的手术缝合和物理贴合等集成方式,具有巨大的潜力。本文提出的材料,方法和概念,不但解决了长期以来生物组织与植入设备在集成方法上的困难和挑战,同时也为一系列生物可粘附电子器件的发展和人机融合交互的方式提供了新的机遇和思路。

责任编辑:xj

原文标题:今日Nature Materials: 生物粘性电子界面,实现稳定高效人机界面交互

文章出处:【微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电子设备
    +关注

    关注

    2

    文章

    2782

    浏览量

    53818
  • 人机界面
    +关注

    关注

    5

    文章

    527

    浏览量

    44159
  • 电子器件
    +关注

    关注

    2

    文章

    590

    浏览量

    32109
  • 导电
    +关注

    关注

    0

    文章

    228

    浏览量

    21555

原文标题:今日Nature Materials: 生物粘性电子界面,实现稳定高效人机界面交互

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    CBM24AD99Q | 重塑生物电势测量,开启精准医疗新时代

    ,传统的模数转换器(ADC)在处理生物电势信号时,常面临噪声干扰大、分辨率不足、功耗过高等挑战,从而限制了生物电势测量技术的进一步发展。芯佰微电子敏锐捕捉到这一市场
    的头像 发表于 12-05 09:47 1237次阅读
    CBM24AD99Q | 重塑<b class='flag-5'>生物电</b>势测量,开启精准医疗新时代

    芯佰微电子CBM24AD99Q模数转换器(ADC) 助力生物电势测量技术

    举足轻重的角色。然而,传统的模数转换器(ADC)在处理生物电势信号时,常面临噪声干扰大、分辨率不足、功耗过高等挑战,从而限制了生物电势测量技术的进一步发展。   芯佰微电子敏锐捕捉到这一市场痛点,凭借其深厚的模拟及混合信号集成电
    发表于 12-05 09:37 135次阅读
    芯佰微<b class='flag-5'>电子</b>CBM24AD99Q模数转换器(ADC) 助力<b class='flag-5'>生物电</b>势测量技术

    生物芯片有哪些分类

    全球首个生物芯片产品问世虽然已有20多年的时间,但生物芯片分类方式仍没有完全统一的标准。比较常见的分类方式有3种,分别是按用途、作用方式和成分来分类。 (1)用途分类 生物电子芯片:用于生物
    的头像 发表于 12-03 15:42 278次阅读

    触觉传感重磅《Nature》!无线、低功耗、多刺激模式触觉电子皮肤(附原论文)

    中有广泛的应用。在触觉传感方面,已有众多Nature、Science子刊发表,但是Nature正刊却仍十分稀少。           近日,美国西北大学John A. Rogers/黄永刚大连理工大学解兆谦联合团队提出了一个微型
    的头像 发表于 11-14 18:13 822次阅读
    触觉传感重磅《<b class='flag-5'>Nature</b>》!无线、低功耗、多刺激模式触觉<b class='flag-5'>电子</b>皮肤(附原论文)

    生物电厂可燃物料堆垛温度监控预警系统

    生物电厂可燃物料堆垛温度监控预警系统,草垛堆秸秆堆防自燃测温系统.易燃堆垛温度监测防自燃报警系统.生物质电厂燃料防自燃无线测温系统,生物电厂防自燃,燃料堆垛测温系统 电厂燃料的收购与其他物质回收相比
    的头像 发表于 10-23 09:34 121次阅读
    <b class='flag-5'>生物电</b>厂可燃物料堆垛温度监控预警系统

    CBM24AD9X系列-高性能心电图及生物电势测量的理想选择

    在现代医疗科技的飞速发展中,精确的生物电势测量设备变得越来越重要。芯佰微电子推出的CBM24AD9X系列,是一款专为心电图(ECG)和其他生物电势测量设计的低噪声24位模数转换器(ADC),为医疗
    的头像 发表于 09-23 15:41 360次阅读
    CBM24AD9X系列-高性能心电图及<b class='flag-5'>生物电</b>势测量的理想选择

    用运算放大器和仪表放大器设计了一款生物电信号电放大滤波电路,如何才能有效抑制电路噪声?

    本人用运算的放大器和仪表放大器设计了一款生物电信号电放大滤波电路,仿真结果时发现噪声在100Hz左右(大概这个范围)存在几微伏电噪声,想知道如何才能有效抑制电路噪声,有没有通用套路?谢谢!
    发表于 08-16 06:16

    生物电信号的主要的基本有哪些

    生物电信号是一种生物体内细胞或组织产生的电信号,是生物体进行各种生理活动的基础。生物电信号在生物体的各个层面上都有广泛的应用,包括神经传导、
    的头像 发表于 08-11 10:58 1168次阅读

    适用于医疗器械的24位生物电势测量模拟前端芯片SC2946

    适用于医疗器械的24位生物电势测量模拟前端芯片SC2946
    的头像 发表于 05-17 09:46 431次阅读
    适用于医疗器械的24位<b class='flag-5'>生物电</b>势测量模拟前端芯片SC2946

    研发生物电势模拟前端芯片优化医疗设备能效

    上海类比半导体技术有限公司(简称“类比半导体”或“类比”)近日宣布推出全新AFE90x系列生物电势模拟前端芯片,专为医疗设备中的动态心电监测和Holter应用而精心研发。
    的头像 发表于 04-24 10:17 447次阅读

    用于先进电生理记录的有源微纳协同生物电子器件研究进展综述

    开发精确灵敏的电生理记录平台对心脏病学和神经科学领域的研究至关重要。近年来,有源微纳生物电子器件取得了重大进展,从而促进了电生理学的研究。
    的头像 发表于 04-16 10:55 741次阅读
    用于先进电生理记录的有源微纳协同<b class='flag-5'>生物电子</b>器件研究进展综述

    EMC技术:基础概念到应用的解读?|深圳比创达电子.

    EMC技术:基础概念到应用的解读?|深圳比创达电子电磁兼容性(Electromagnetic Compatibility,简称EMC)作为一项重要的技术领域,在现代电子设备中扮演着至关重要的角色
    发表于 03-11 11:59

    摄入电子设备可用于追踪和治疗人体胃肠道中的不同疾病

    可穿戴及摄入电子产品的发展正在迅速提升生物电子设备的健康监测能力。 使用生物电子设备来追踪人体自身的健康以获知身体舒适度的观念已深入人心。据麦姆斯咨询报道,最新的苹果智能手表,仅在2
    的头像 发表于 03-09 16:08 4202次阅读

    超柔软、超薄微纤维复合水凝胶开启柔性生物电子新时代

    在医学和生物电子领域,与人体组织紧密结合的柔性传感器对于监测健康状况和实现精准医疗具有重要意义。
    的头像 发表于 03-04 09:28 904次阅读
    超柔软、超薄微纤维复合水凝胶开启柔性<b class='flag-5'>生物电子</b>新时代

    用于多功能表皮电子与心脏贴片的激光诱导可拉伸生物电子界面

    穿戴式和植入式生物电子技术能够监测物理、化学以及电生理信号,在人机交互、医疗健康监测、脑机接口、慢性病管理以及药物释放系统等领域具有广泛应用前景。
    的头像 发表于 01-08 10:16 1821次阅读
    用于多功能表皮<b class='flag-5'>电子</b>与心脏贴片的激光诱导可拉伸<b class='flag-5'>生物电子</b>界面