0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能芯片的应用场景_技术路径与竞争格局分析

姚小熊27 来源:人工智能实验室 作者:人工智能实验室 2020-10-11 10:21 次阅读

人工智能已经成为目前芯片行业的一个重要驱动力。回顾人工智能在半导体行业的发展,我们可以清晰地看到一条从云到终端的演进路线。

最初,人工智能主要是作为一种服务部署在云端。本代人工智能基于大数据和神经网络,因此在训练时候需要大量的算力,在云端部署的时候也需要算力做支撑,因此云端人工智能领域中以Nvidia为代表的GPU加速人工智能成为了关注焦点,同时也有以Graphcore、Habana为代表的云端专用人工智能芯片公司与GPU分庭抗礼。2018年之后,随着模型和芯片设计的优化,人工智能逐渐从云端下沉到手机等强智能设备终端,在手机上基于人工智能算法的超分辨、美颜、人脸识别等应用也渐渐得到了主流认可,相应的芯片(IP)也就成为了手机SoC上不可或缺的一部分,高通、苹果、华为海思等都拥有自己的高性能人工智能加速IP,用以支持手机人工智能应用。

而随着人工智能技术的进一步演进,我们看到它正在进一步和物联网结合,超低功耗人工智能正是这个人工智能继续下沉的新动向。

超低功耗人工智能芯片的应用场景

超低功耗人工智能芯片(IP)的工作功耗在数十毫瓦或更低(作为比较,手机端人工智能IP的工作功耗往往在数百毫瓦到瓦级别,而云端人工智能加速卡功耗通常在数百瓦),同时往往结合事件驱动技术,即绝大部分时间计算部分都处于休眠状态,仅仅在发生相关事件时才会启动,这样就可以把平均功耗降低到毫瓦数量级以下。

超低功耗人工智能可以应用在什么场景下呢?消费电子领域中就有超低功耗人工智能的一席之地。在下一代智能设备如可穿戴设备和智能眼镜类设备中,设备由于尺寸等原因电池容量有限,而这些设备需要执行智能生物信号处理(例如智能手表上的心率检测)、手势识别(例如在目前的HoloLens中,基于人工智能的手势识别是主要用户交互方式)、语音识别等等,因此需要非常高能效比的人工智能加速模块。除此之外,在智能家庭等领域,超低功耗人工智能也有落地机会,例如目前的智能门锁市场,加入人脸识别会使智能门锁的用户体验大大改善,但是智能门锁通常必须依靠电池供电,而且预期的电池寿命至少要半年到一年,这样一来对于执行人工智能计算的模块就提出了非常高的能效比需求。

除了消费电子之外,工业应用中也需要超低功耗人工智能。工业应用中对于超低功耗人工智能的需求往往来源于智能传感器。这类传感器安装在机器、机械臂、管道等重要环境中,需要能时刻监测各类信号并且运行相应的人工智能算法来判断运行状况。在这些场景下,传感器必须依靠电池供电,而超低功耗人工智能可以大大减少电池消耗,这也意味着传感器更换电池的间隔可以提升,这也就大大降低了这类传感器系统的部署和维护成本。

超低功耗人工智能芯片的技术路径

目前,超低功耗人工智能芯片大概可以分为三种技术路径。

首先是基于数字电路的超低功耗人工智能加速模块设计。使用数字电路向超低功耗方向的优化方法首先是从系统架构层面做优化,尽量减小模型的体积,并优化数据流以降低内存访问开销。此外,在电路层面可以降低电源电压,甚至使用亚阈值逻辑门设计,以降低电路运行时的功耗,以及漏电流。使用数字电路方法的优势在于可以更容易地与人工智能计算之外的模块集成并构成SoC,而无需在数模转换上消耗额外能量。

第二条技术路径是使用模拟计算来完成神经网络的计算。模拟计算往往和内存内计算相结合以实现高能效比,其具体的思路是目前人工智能计算中往往存储访问是能量消耗最大的部分,而使用模拟计算则可以在存储(如SRAM或Flash等NVM)读出电路中直接做计算,这样就省去了数据读出再计算的步骤,而可以直接在内存内完成计算。使用模拟计算配合内存内计算往往可以实现很高的能效比,例如欧洲的著名半导体研究机构IMEC宣布将在未来数年内完成能效比高达10000TOPS/W的模拟计算人工智能加速模块。但是模拟计算对于模型往往有较多限制,例如必须在计算精度较低时仍然能保证准确率等,因此需要很好的软件/硬件协同设计。

存内模拟计算是超低功耗人工智能的主要技术路径之一

第三条道路则是在模型设计上使用脉冲神经网络的设计(神经模态芯片)。使用脉冲神经网络设计的神经模态芯片仅仅在神经元被激活时消耗能量,而绝大部分神经元在大部分情况下都处于休眠状态而几乎不消耗能量,因此其平均能效比可以做到比基于主流卷积神经网络的芯片高一个数量级。脉冲神经网络和神经模态芯片的难点主要在于模型设计和训练上存在很高的门槛,此外如何对相应的脉冲神经网络模型做电路级优化也有很高的技术含量。

超低功耗人工智能芯片竞争格局:中国公司占据有利地位

超低功耗人工智能芯片市场目前仍然处于起步阶段,但是随着未来物联网和下一代智能设备的技术演进,预计在未来几年内市场热度会越来越高。目前,从事超低功耗人工智能芯片开发的主要初创公司,但是未来超低功耗人工智能芯片的下一代领导者很可能就出现在这些初创公司中。

在消费电子领域,美国的Syntiant得到了亚马逊Alexa Fund、微软M12和Intel Capital等行业资本的支持,其主要产品是针对智能设备语音处理的超低功耗芯片。与此相对,中国的初创公司在这个领域的布局则更加多样。来自清华大学的清微科技使用可重构电路技术,其超低功耗产品能覆盖语音识别、视觉识别等多个领域,可望为下一代智能设备赋能。另一家中国公司则是SynSense,SynSense的技术路线是使用脉冲神经网络,技术来自于神经脉冲网络权威,苏黎世大学Giacomo Indiveri教授的团队。目前SynSense的脉冲神经网络已经完成了多次流片迭代和验证,相关的产品覆盖了视觉、生物信号处理、语音识别等,平均功耗可以低至微瓦数量级。此外,SynSense还于最近推出了使用神经脉冲网络结合动态视觉传感器DVS的产品Speck,该产品能真正实现事件驱动,在绝大多数时间运行于超低的功耗下,而在检测到动态事件后DVS能提供超高的视觉采样频率,并且配合脉冲神经网络实现超高性能/超低延迟的视觉信号处理,从而兼具超低功耗和高性能。

而在工业应用领域,同样来自清华大学的湃方科技走在了全球前列,成为了在工业领域能真正落地的超低功耗人工智能算法和芯片解决方案公司。湃方科技的应用场景涵盖了卫星、机械臂、发电机、电机等等重要的工业应用,其芯片能提供高达50TOPS/W的能效比。

目前,在超低功耗人工智能芯片领域,中国的初创公司和团队无论是数量还是质量都走在了全球前列。让我们期待中国能在未来的超低功耗人工智能领域继续引领全球的潮流。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47354

    浏览量

    238817
  • 人工智能芯片

    关注

    1

    文章

    120

    浏览量

    29115
收藏 人收藏

    评论

    相关推荐

    模块化仪器的技术原理和应用场景

    模块化仪器是插拔式的计算机板卡,功能类似于传统的台式仪器,其技术原理和应用场景可以归纳如下:一、技术原理 模块化设计:模块化仪器使用一个框架,可以将不同类型或不同数量的功能卡插入其中,从而适应一系列
    发表于 11-28 15:09

    嵌入式和人工智能究竟是什么关系?

    了数据传输的压力,还提高了系统的响应速度。而在物联网中,嵌入式系统更是一个核心的组成部分。通过将人工智能算法应用于物联网设备,我们可以实现对海量数据的智能分析,从而为各种应用场景提供精
    发表于 11-14 16:39

    便携式示波器的技术原理和应用场景

    过程中,可使用便携式示波器对各种接口的信号质量进行检测与分析。 三、发展趋势 智能化:随着人工智能技术的不断发展,便携式示波器将越来越智能化。未来的便携式示波器将具备自动检测、自动校准
    发表于 10-24 14:31

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    不仅提高了能源的生产效率和管理水平,还为未来的可持续发展提供了有力保障。随着技术的不断进步和应用场景的不断拓展,人工智能将在能源科学领域发挥更加重要的作用。 总结 《AI for Science:
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    。 5. 展望未来 最后,第一章让我对人工智能驱动的科学创新未来充满了期待。随着技术的不断进步和应用场景的拓展,AI将在更多领域发挥关键作用,从基础科学到应用科学,从理论研究到实践应用,都将迎来前所未有
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    和使用该技术,无需支付专利费或使用费。这大大降低了人工智能图像处理技术的研发成本,并吸引了大量的开发者、企业和研究机构参与其生态建设。 灵活性则体现在RISC-V可以根据不同的应用场景
    发表于 09-28 11:00

    智能IC卡测试设备的技术原理和应用场景

    智能IC卡测试设备的技术原理和应用场景,可以从以下几个方面进行阐述:技术原理智能IC卡测试设备的技术
    发表于 09-26 14:27

    NFC协议分析仪的技术原理和应用场景

    NFC协议分析仪的技术原理和应用场景可以详细阐述如下:技术原理NFC(Near Field Communication,近场通信)协议分析
    发表于 09-25 14:45

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    RISC-V适合什么样的应用场景

    设计的理想工具,有助于培养更多的计算机专业人才。 综上所述,RISC-V适合的应用场景非常广泛,包括物联网、嵌入式系统、人工智能、自动驾驶、汽车电子、数据中心和云计算以及教育和研究等多个领域。随着RISC-V生态系统的不断完善和技术
    发表于 07-29 17:16

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的发展提供有力支持。
    发表于 07-29 17:05

    人工智能芯片与服务器芯片的区别

    人工智能芯片(AI芯片)与服务器芯片在多个方面存在显著差异,这些差异主要体现在设计目标、功能特性、应用场景以及
    的头像 发表于 07-12 18:21 1649次阅读

    fpga芯片人工智能芯片的区别

    FPGA芯片人工智能芯片(AI芯片)在设计和应用上存在一些关键的区别,这些区别主要体现在它们的功能、优化目标和适用场景上。
    的头像 发表于 03-14 17:26 1270次阅读

    NanoEdge AI的技术原理、应用场景及优势

    NanoEdge AI 是一种基于边缘计算的人工智能技术,旨在将人工智能算法应用于物联网(IoT)设备和传感器。这种技术的核心思想是将数据处理和分析从云端转移到设备本身,从而减少数据传
    发表于 03-12 08:09