随着科技产品的更新换代,科技产物所使用的原材料当然也将接受不同的命运。或被废弃;或被淘汰;或被改良;又或是与其他材料碰撞以研究出新的材料。而在这其中,碳化硅(SiC)为何能在半导体材料中的地位经久不衰?或许这跟SiC本身强大的适应力和优点以及性价比有关。
一、碳化硅器件的优势特性
碳化硅(SiC)是目前发展最成熟的宽禁带半导体材料,世界各国对SiC的研究非常重视,纷纷投入大量的人力物力积极发展,美国、欧洲、日本等不仅从国家层面上制定了相应的研究规划,而且一些国际电子业巨头也都投入巨资发展碳化硅半导体器件。
与普通硅相比,采用碳化硅的元器件有如下特性:
1、高压特性
碳化硅器件是同等硅器件耐压的10倍
碳化硅肖特基管耐压可达2400V。
碳化硅场效应管耐压可达数万伏,且通态电阻并不很大。
2、高频特性
3、高温特性
在Si材料已经接近理论性能极限的今天,SiC功率器件因其高耐压、低损耗、高效率等特性,一直被视为“理想器件”而备受期待。然而,相对于以往的Si材质器件,SiC功率器件在性能与成本间的平衡以及其对高工艺的需求,将成为SiC功率器件能否真正普及的关键。
目前,低功耗的碳化硅器件已经从实验室进入了实用器件生产阶段。目前碳化硅圆片的价格还较高,其缺陷也多。
二、最受关注的碳化硅MOS
1、SiC-MOSFET
SiC-MOSFET是碳化硅电力电子器件研究中最受关注的器件。成果比较突出的就是美国的Cree公司和日本的ROHM公司。
碳化硅MOS的结构
碳化硅MOSFET(SiCMOSFET)N+源区和P井掺杂都是采用离子注入的方式,在1700℃温度中进行退火激活。另一个关键的工艺是碳化硅MOS栅氧化物的形成。由于碳化硅材料中同时有Si和C两种原子存在,需要非常特殊的栅介质生长方法。其沟槽星结构的优势如下:
平面vs沟槽
SiC-MOSFET采用沟槽结构可最大限度地发挥SiC的特性
碳化硅MOS的优势
硅IGBT在一般情况下只能工作在20kHz以下的频率。由于受到材料的限制,高压高频的硅器件无法实现。碳化硅MOSFET不仅适合于从600V到10kV的广泛电压范围,同时具备单极型器件的卓越开关性能。相比于硅IGBT,碳化硅MOSFET在开关电路中不存在电流拖尾的情况具有更低的开关损耗和更高的工作频率。
20kHz的碳化硅MOSFET模块的损耗可以比3kHz的硅IGBT模块低一半,50A的碳化硅模块就可以替换150A的硅模块。显示了碳化硅MOSFET在工作频率和效率上的巨大优势。
碳化硅MOSFET寄生体二极管具有极小的反向恢复时间trr和反向恢复电荷Qrr。如图所示,同一额定电流900V的器件,碳化硅MOSFET寄生二极管反向电荷只有同等电压规格硅基MOSFET的5%。对于桥式电路来说(特别当LLC变换器工作在高于谐振频率的时候),这个指标非常关键,它可以减小死区时间以及体二极管的反向恢复带来的损耗和噪音,便于提高开关工作频率。
碳化硅MOS管的应用
碳化硅MOSFET模块在光伏、风电、电动汽车及轨道交通等中高功率电力系统应用上具有巨大的优势。碳化硅器件的高压高频和高效率的优势,可以突破现有电动汽车电机设计上因器件性能而受到的限制,这是目前国内外电动汽车电机领域研发的重点。如电装和丰田合作开发的混合电动汽车(HEV)、纯电动汽车(EV)内功率控制单元(PCU),使用碳化硅MOSFET模块,体积比减小到1/5。三菱开发的EV马达驱动系统,使用SiCMOSFET模块,功率驱动模块集成到了电机内,实现了一体化和小型化目标。预计在2018年-2020年碳化硅MOSFET模块将广泛应用在国内外的电动汽车上。
三、碳化硅肖特二极管
1、碳化硅肖特基二极管结构
碳化硅肖特基二极管(SiCSBD)的器件采用了结势垒肖特基二极管结构(JBS),可以有效降低反向漏电流,具备更好的耐高压能力。
2、碳化硅肖特基二极管优势
碳化硅肖特基二极管是一种单极型器件,因此相比于传统的硅快恢复二极管(SiFRD),碳化硅肖特基二极管具有理想的反向恢复特性。在器件从正向导通向反向阻断转换时,几乎没有反向恢复电流(如图1.2a),反向恢复时间小于20ns,甚至600V10A的碳化硅肖特基二极管的反向恢复时间在10ns以内。因此碳化硅肖特基二极管可以工作在更高的频率,在相同频率下具有更高的效率。另一个重要的特点是碳化硅肖特基二极管具有正的温度系数,随着温度的上升电阻也逐渐上升,这与硅FRD正好相反。这使得碳化硅肖特基二极管非常适合并联实用,增加了系统的安全性和可靠性。
概括碳化硅肖特基二极管的主要优势,有如下特点:
几乎无开关损耗
更高的开关频率
更高的效率
更高的工作温度
正的温度系数,适合于并联工作
开关特性几乎与温度无关
碳化硅肖特基二极管的应用
碳化硅肖特基二极管可广泛应用于开关电源、功率因素校正(PFC)电路、不间断电源(UPS)、光伏逆变器等中高功率领域,可显著的减少电路的损耗,提高电路的工作频率。在PFC电路中用碳化硅SBD取代原来的硅FRD,可使电路工作在300kHz以上,效率基本保持不变,而相比下使用硅FRD的电路在100kHz以上的效率急剧下降。随着工作频率的提高,电感等无源原件的体积相应下降,整个电路板的体积下降30%以上。
四、如何评价碳化硅?
几乎凡能读到的文章都是这样介绍碳化硅:
碳化硅的能带间隔为硅的2.8倍(宽禁带),达到3.09电子伏特。其绝缘击穿场强为硅的5.3倍,高达3.2MV/cm.其导热率是硅的3.3倍,为49w/cm.k。由碳化硅制成的肖特基二极管及MOS场效应晶体管,与相同耐压的硅器件相比,其漂移电阻区的厚度薄了一个数量级。其杂质浓度可为硅的2个数量级。由此,碳化硅器件的单位面积的阻抗仅为硅器件的100分之一。它的漂移电阻几乎就等于器件的全部电阻。因而碳化硅器件的发热量极低。这有助于减少传导和开关损耗,工作频率一般也要比硅器件高10倍以上。此外,碳化硅半导体还有的固有的强抗辐射能力。
近年利用碳化硅材料制作的IGBT(绝缘栅双极晶体管)等功率器件,已可采用少子注入等工艺,使其通态阻抗减为通常硅器件的十分之一。再加上碳化硅器件本身发热量小,因而碳化硅器件的导热性能极优。还有,碳化硅功率器件可在400℃的高温下正常工作。其可利用体积微小的器件控制很大的电流。工作电压也高得多。
五、碳化硅器件目前发展势头如何?
1、技术参数:举例来说,肖特基二极管电压由250伏提高到1000伏以上,芯片面积小了,但电流只有几十安。工作温度提高到180℃,离介绍能达600℃相差很远。压降更不尽人意,与硅材料没有差别,高的正向压降要达到2V。
2、市场价格:约为硅材料制造的5到6倍。
六、为何SIC器件还无法普及?
早在20世纪60年代,碳化硅器件的优点已经为人们所熟知。之所以目前尚未推广普及,是因为存在着许多包括制造在内的许多技术问题。直到现在SIC材料的工业应用主要是作为磨料(金刚砂)使用。
SIC在能够控制的压力范围内不会融化,而是在约2500℃的升华点上直接转变为气态。所以SIC单晶的生长只能从气相开始,这个过程比SIC的生长要复杂的多,SI在大约1400℃左右就会熔化。使SIC技术不能取得商业成功的主要障碍是缺少一种合适的用于工业化生产功率半导体器件的衬底材料。对SI的情况,单晶衬底经常指硅片(wafer),它是从事生产的前提和保证。一种生长大面积SIC衬底的方法以在20世纪70年代末研制成功。但是用改进的称为Lely方法生长的衬底被一种微管缺陷所困扰。
只要一根微管穿过高压PN结就会破坏PN结阻断电压的能力,在过去三年中,这种缺陷密度已从每平方毫米几万根降到几十根。除了这种改进外,当器件的最大尺寸被限制在几个平方毫米时,生产成品率可能在大于百分之几,这样每个器件的最大额定电流为几个安培。因此在SIC功率器件取得商业化成功之前需要对SIC的衬底材料作更大技术改进。
以下为罗姆的SiC类型新产品:
碳化硅动力装置:SCT2080KEHR
碳化硅动力装置:SCT3030ALHR
碳化硅动力装置:SCT3040KLHR
碳化硅动力装置:SCS302AJ
碳化硅动力装置:SCS304AJ
审核编辑 黄昊宇
-
SiC
+关注
关注
29文章
2747浏览量
62394
发布评论请先 登录
相关推荐
评论