前言
我们说,IGBT的双脉冲实验和短路实验一般都会在一个阶段进行,但是有的时候短路测试会被忽略,原因有些时候会直接对装置直接实施短路测试,但是此时实际上并不是彻底和充分的。常见的情况有:
①没有进行IGBT短路实验
觉得这个实验风险太大,容易炸管子,损失太大或者觉得短路时电流非常大,这样很恐怖。
②进行了短路测试
但是测试时候的判断标准较简单,对IGBT的短路行为没有进行较为仔细的观察和考证。
这样做可能会导致后期装置出现由于IGBT短路相关导致的故障时,排查和处理起来较为麻烦,所以在使用起初,认真地对IGBT进行短路测试是非常必要。
短路分为两种:
桥臂内短路(直通):
我们称之为“一类短路”,一般为桥臂直通导致的,硬件或软件失效造成的,此时短路回路中的电感量很小(100nH),一般我们会采用VCE(sat)检测来实现短路保护。
桥臂间短路(大电感短路):
我们称之为“二类短路”,一般为相间短路或者是相对地短路,此时短路回路中的电感较大(uH级别),可以使用VCE(sat)检测或是使用霍尔检测电流变化来实现短路保护,这类短路中的电感量是不确定的。
一般我们所说的短路测试是针对桥臂内短路情形来说的,下面就让我们来了解下IGBT的短路测试到底是什么样的。
2、短路测试
电网电压经过调压器和接触器,将母线电容电压充到所需要的值,再断开接触器。上管IGBT的门极被关断,且上管用粗短的铜排进行短路。对下管IGBT释放一个单脉冲,直通就形成了。
短路测试中需要注意以下事项:
①该测试的关注对象是电容组,母排,杂散电感,被测IGBT;
②短路回路中的电感量很低,所以上管的短路排的电感量可以极大地影响测量的结果,因此绝不可忽视“粗短铜排”的长短和粗细(当然,这里不一定非得使用铜排,电感量很低的导线也是可以的);
③短路测试的能量全部来自母排电容组,通常来说,虽然短路电流很大,但是因为时间极短,所以这个测试所消耗的能量很小,实验前后电容上的电压不会有明显变化;
④上管IGBT是被一直关断的,但是这个器件不可或缺,因为下
管被关断后,短路电流还需要由上管二极管续流;
⑤该测试需要测量三个物理量,分别是,下管的Vce,Vge,及Ic;
⑥电流探头需要测量Ic的位置,而不是短铜排的电流,这两个位置的电流波形是不同的;
⑦下管IGBT的脉冲需要严格控制,最开始实验可以使用10us,然后逐步增加;
⑧环境温度对实验结果有较大的影响,通常datasheet给出的高结温的结果;对应用者而言,常温实验是比较现实的;但低温时的短路测试会比较苛刻,如果系统规格有低温要求时,是有必要进行测试的;
⑨在此实验前需要对直流母排的杂散电感有一定的评估,或者用双脉冲测试方法对IGBT关断时的电压尖峰进行评估,以把握好短路时的电压尖峰,这个值可能会非常高;
短路测试步骤:
⑴在弱电情况下,确认所发单脉冲的宽度;
⑵将母线电压调至20~30V,发送一个单脉冲,此时也会发生短路,会有一定的电流,利用此步骤确认电流探头的方向及其他各物理量测量正确,同时确认示波器能正确捕捉该瞬间;这个步骤会比较安全;
⑶短路测试时,母线不宜过低,否则可能会见到一些奇异的震荡;对于1200V的IGBT,母线为500V起;1700V的IGBT,母线为700V起;3300V的IGBT,1000V起;(最近遇到一个问题:在做1000A/1700VIGBT模块短路测试时,母线电压加到900V时,模块发生失效,暂时还没有找到具体原因,等找到原因会再分享出来的)。
⑷母线加到额定点,将进线接触器断开,放出单脉冲,装置会发出“咚”的一声响,确认示波器捕捉到该时刻;
⑸通常来说,如果一切都设置正确的话,短路测试是很容易成功的,但也可能由于某些细节没有处理好,存在一定的几率,该测试会失败——这个IGBT会失效,并将电容的能量全部放掉,一般不会爆炸得很厉害;
⑹第一次发10us的脉冲实际上是一种尝试性测试,其目的是,在尽量低风险的情况下,对设备的短路性能进行最初步的摸底;
⑺如果第一次10us测试已经发现波形有问题,则需要整改;
⑻如果第一次10us测试发现IGB没有发生退饱和现象,则可能意味着短路回路电感量太大,需要整改;
⑼如果第一次10us测试发现波形正常,可以脉冲延长至12us,再做,再延长到15us,再做,如果发现驱动器释放出来的脉冲不再增长,则意味着驱动器对IGBT进行了保护,否则,意味着驱动器保护电路设置有问题,需要整改;
实例简述
下面是某模块短路测试的实验结果:
ⅰ 用电流的上升率di/dt求出短路回路中的全部电感量,再减去之前测出的杂散电感,就能得到插入的铜排的感量;
ⅱ 关注短路电流的最高值,与datasheet中标注的值进行比较,是否过高,电流是否有震荡;
ⅲ 从IGBT退饱和算起,至电流被关断,期间的时间是否控制在10us内,这个条件是不可以妥协的;
ⅳ 短路电流的峰值与门极钳位电路有很大的关系,如果门极钳位性能不好,短路电流峰值会很高;(门极钳位电路出现的原因是因为米勒效应的存在,我们上篇文章有提到过,在IGBT短路时,米勒电容会影响门极电压,导致短路电流激增,使IGBT承担风险。越大容量的IGBT,米勒效应越强,门极钳位电路越重要!)
ⅴ 关注Vce电压,需要多久才退饱和,在关断时刻时,Vce电压尖峰有多高,是否存在危险,有源钳位是否动作;
ⅵ 门极电压的评判需要比较谨慎,因为这个测试di/dt及du/dt都很大,门极探头很容易测不准。
第二种测试方法
下面是第二种测试方法:
给上管IGBT驱动器一个常高信号,使上管保持开通,再给下管发单脉冲。这个实验的优点是,确保短路回路中的电感量就是直流母线的杂散电感,足够低。当然,这可能谈不上是第二种方法,只是优化了短路实现的条件,将上面的“粗短铜排”的电感带来的影响消除了。
上面提到最近实验中遇到的一个问题,就是测1000A/1700V模块时,母线加到900V时模块失效,失效时的波形如下:
我们可以看到,此时的电流Ic瞬间冲得很高,门极电压也很大,伴随的现象是,门极驱动电路那块发生了严重的烧毁,具体原因还在分析。
审核编辑 黄昊宇
-
IGBT
+关注
关注
1264文章
3758浏览量
248201
发布评论请先 登录
相关推荐
评论