0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

云端、边缘和终端AI芯片的挑战

工程师 来源:是德科技快讯 作者:是德科技快讯 2020-10-16 09:27 次阅读

5年前,在大基金的东风下,芯片产业风起云涌。芯片设计公司的数量从2015年的736家,一越到了2016年的1362家,几乎翻了一倍。其中,AI芯片是当时一颗耀眼的新星。

经过几年的探索和沉淀,AI的发展也许已经悄然进入2.0阶段。大家更加注重与特定应用场景的结合,比如智能汽车,智能安防等;有部分则从单纯的基于ASIC的方式转向尝试通用计算道路的探索,兼顾通用性并针对一些重点应用做相应的优化。少了吵吵嚷嚷的热闹,多了踏踏实实的落地。

随着应用的深入和落地,云端、边缘和终端侧多点开花。每个节点的芯片侧重点可能略有不同,云端更加强调性能的极致,通常采用异构的芯片架构,用GPU或者专用的ASIC芯片与CPU配合,处理复杂的数据训练或者inference的工作,那GPU/ASIC之间以及GPU/ASIC与CPU之间以及GPU/ASIC与存储模块之间都需要极高性能的接口来支撑,如PCIe、CCIX、GenZ、DDR等;

边缘或者终端侧虽然不像云端对性能要求那么高,但是他们需要面对更多复杂的应用场景,如前面提到的智能驾驶、智能医疗、工业智能等,那么他们会在兼顾性能的同时更加看重能耗比的指数,因此也会有一些新的接口或者总线类型来适应他们的应用,如MIPI、UFS、LPDDR等。

从云端的总线来看,前面提到有很多种,我们以PCIe来举例。虽然它的效率和性能并不是最高的,但它目前是最成熟的,用的也比较多。目前商用落地的是PCIe 4.0技术,那到今年年底,有一些领先的服务器厂商就会推出PCIe 5.0的样品。那PCIe 5.0的速率已经达到了32Gbps,而且在这个速率下还要考虑到与前代的兼容,它的channel loss会非常大,在奈奎斯特频率下会达到36dB。在如此高的速率下要保证这么高的设计余量,对设计工程师来说,这是一个非常大的挑战。

举例来说,即使经过非常复杂的预加重、均衡、信道训练等,那最终达到芯片接收端,芯片内部的眼高不会超过15mW,眼宽不会超过10ps。这是非常非常小的余量。如果设计的余量不够,那总线的丢包率就会比较高,就会导致重传,那芯片的效率就大大降低了。那如何实现更大的设计余量?如何去测试设计的余量,如何将设计和测试做闭环验证都是工程师面临的巨大挑战。

那对于边缘或者终端侧来说,要考虑成本、要考虑功耗。所以它的总线技术不会像云端走的那么快,但它会采用一些特殊的总线来适应终端场景的需求。比如在云端更多的采用类似PCIe这种来做计算,但在终端/边缘侧则更多的采用类似MIPI这种总线进行计算或者数据的传输;在云端的数据存储总线可能会用到DDR4或者DDR5,但在终端/边缘,可能更多的会用到LPDDR;对于云端,可能更多的使用PCIe等去做扩展,而终端会更多倾向于用USB去做扩展。所以两者差异还是很大的。

除了速率上的不同,终端侧其实还需要考虑连接的简洁性以及功耗的性能,所以终端侧的总线的内部协议或者信号的调整方式上反而更加复杂一些。比如Type-C接口,它外面的连接非常简洁,但是其实它内部协议非常复杂。它要考虑正反插,要考虑供电,要兼容显示和数据传输等等。所以终端侧的这些总线的设计要求与云端又不一样。

• 当然,无论是什么样的AI芯片,无论是什么样的技术浪潮,是德科技都能陪伴在您的产品设计和研发过程中,为您的芯片质量提供坚实的保障。

• 无论是计算总线还是内存接口总线,无论是仿真还是产品测试,是德科技都有全面的解决方案,为您的产品保驾护航。

顺便广告一下,是德科技的产品中也加入了AI的算法,对于特定的测试波形,是德科技的AI测试能给您一些必要的线索,让您快速定位到问题所在,帮助产品快速推向市场。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    456

    文章

    50967

    浏览量

    424925
  • 终端
    +关注

    关注

    1

    文章

    1145

    浏览量

    29929
  • AI
    AI
    +关注

    关注

    87

    文章

    31158

    浏览量

    269520
  • 云端
    +关注

    关注

    0

    文章

    120

    浏览量

    16892
收藏 人收藏

    评论

    相关推荐

    云端AI开发环境分析

    当今,云端AI开发环境作为支撑AI技术快速迭代与应用部署的关键基础设施,扮演着至关重要的角色。下面,AI部落小编为您分析云端
    的头像 发表于 11-25 10:27 172次阅读

    研华科技打造整体边缘AI服务器解决方案

    近年来,在AIoT数据量快速成长、硬件效能提升、绿色低碳意识抬头等趋势影响下,边缘AI应用的系统架构也出现改变。随着越来越多企业将AI模型训练由云端转移至
    的头像 发表于 11-18 15:35 244次阅读

    AI云端计算资源有哪些类型

    AI云端计算资源涵盖了从基础设施到软件服务的多个层面,为AI模型的训练、推理和部署提供了强大的支持。下面,AI部落小编为您详细介绍AI
    的头像 发表于 11-15 09:39 181次阅读

    从工业机器视觉到协作机器人,瑞萨电子有哪些AI芯片的布局?

    的应用落地。传统的人工智能依靠云端,数据分析和决策都在云端终端重在执行。而人工智能要广泛的落地,就必须去中心化,将很多的决策放到边缘侧,通过边缘
    的头像 发表于 11-14 00:14 3088次阅读
    从工业机器视觉到协作机器人,瑞萨电子有哪些<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>的布局?

    Orin芯片边缘计算结合

    Orin芯片,作为英伟达推出的一款高性能AI处理器,与边缘计算的结合,无疑将为智能计算领域带来革命性的变化。 一、Orin芯片的创新特点 Orin
    的头像 发表于 10-27 16:51 781次阅读

    边缘计算的技术挑战与解决方案

    边缘计算作为一种新型的计算架构,在带来诸多优势的同时,也面临着一些技术挑战。以下是对边缘计算的技术挑战及相应解决方案的分析: 一、技术挑战
    的头像 发表于 10-24 14:36 586次阅读

    云端ai开发环境怎么样

    随着云计算技术的成熟与普及,云端AI开发环境应运而生,为AI开发者提供了一个高效、灵活、可扩展的开发与部署平台。下面,一起探讨云端ai开发环
    的头像 发表于 10-24 09:37 204次阅读

    NVIDIA IGX平台加速实时边缘AI应用

    实时边缘 AI 对于医疗、工业和科学计算至关重要,因为这些任务关键型应用需要即时数据处理、低延迟和高可靠性,以确保作出及时准确的决策。这些挑战不仅涉及硬件平台上的高带宽传感器处理和 AI
    的头像 发表于 09-09 10:14 549次阅读
    NVIDIA IGX平台加速实时<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>应用

    什么是边缘AI边缘AI的供电挑战

    RECOM 的 RACM1200-V 采用数字通信,可轻松集成到边缘 AI设计中。
    的头像 发表于 09-02 11:52 501次阅读
    什么是<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>?<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>的供电<b class='flag-5'>挑战</b>

    华邦电子为边缘设备打造生成式AI性能

    在以大模型为基础的云端 AI 广泛赋能各行各业后,边缘设备对于 AI 也释放出巨大需求,AI 也在从云端
    的头像 发表于 08-19 16:14 618次阅读

    边缘AI芯片市场升温!英特尔、AMD出大招,本土芯片厂商争发新品

    边缘 AI 是指在边缘设备(例如智能手机、物联网设备和嵌入式系统)上实现 AI 算法,而不是依赖于基于云的基础设施。AI手机和
    的头像 发表于 08-01 00:17 4527次阅读
    <b class='flag-5'>边缘</b><b class='flag-5'>AI</b><b class='flag-5'>芯片</b>市场升温!英特尔、AMD出大招,本土<b class='flag-5'>芯片</b>厂商争发新品

    后摩智能引领AI芯片革命,推出边端大模型AI芯片M30

    在人工智能(AI)技术飞速发展的今天,AI大模型的部署需求正迅速从云端向端侧和边缘侧设备迁移。这一转变对AI
    的头像 发表于 06-28 15:13 712次阅读

    边缘AI芯片提供商超星未来完成数亿元 Pre-B轮融资

    AI产业生态中,计算芯片被视为行业的“卖水人”。依据云端/边缘端、训练/推理两大分类标准,AI芯片
    的头像 发表于 05-09 09:38 581次阅读

    risc-v多核芯片AI方面的应用

    得RISC-V多核芯片能够更好地适应AI算法的不同需求,包括深度学习、神经网络等,从而提高芯片的性能和效率,降低成本,使AI边缘计算晶片更具
    发表于 04-28 09:20

    英伟达、英特尔、AMD等大厂的边缘AI芯片汇总

    需将数据传输到云端进行处理。                                                 边缘AI芯片的出现,极大地提升了
    的头像 发表于 04-24 02:15 1w次阅读
    英伟达、英特尔、AMD等大厂的<b class='flag-5'>边缘</b><b class='flag-5'>AI</b><b class='flag-5'>芯片</b>汇总