0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

未来的AI计算领域,将是CPU、GPU、IPU并行

如意 来源:OFweek电子工程网 作者:Ai芯天下 2020-10-19 16:04 次阅读

前言:

AI近些年的大火,直接促进了CPUGPU的发展,而英伟达的GPU真正借此迅速成为AI市场的主流产品之一,其势头甚至盖过了CPU。

而AI应用需要专门的处理器,而IPU正是这样的处理器。目前,AI在各行各业均得到广泛应用,IPU可以基于自身优势为世界的智能化进程增添不竭动力。

未来的AI计算领域,将是CPU、GPU、IPU并行

英伟达专注的GPU优势逐渐缩小

从专注图像渲染崛起的英伟达的GPU,走的也是相当于ASIC的技术路线,但随着游戏、视频渲染以及AI加速需要的出现,英伟达的GPU也在向着GPGPU的方向演进。

硬件更多的需要与软件生态挂钩时,市场大多数参与者便会倒下。在竞争清理过后,GPU形成了如今的双寡头市场,并且步入相当成熟的阶段。

ASIC本身的成本、灵活性缺失,以及应用范围很窄的特点,都导致它无法采用最先进制程: 即便它们具备性能和能效优势,一旦无法采用最先进制程,则这一优势也将不再明显。

为保持其在GPU领域的寡头地位,使得英伟达必须一直保持先进的制程工艺,保持其通用性,但是要牺牲一定的效能优势。

相比于来自类GPU的竞争,英伟达不应该忽视Graphcore的IPU,特别是Graphcore一直都在强调其是为AI而生,面向的应用也是CPU、GPU不那么擅长的AI应用。

未来的AI计算领域,将是CPU、GPU、IPU并行

利用AI计算打侧面竞争战

不管CPU还是GPU都无法从根本上解决AI问题,因为AI是一个面向计算图的任务、与CPU的标量计算和GPU的矢量计算区别很大。

而另一边的IPU,则为AI计算提供了全新的技术架构,同时将训练和推理合二为一,兼具处理二者工作的能力。

作为标准的神经网络处理芯片,IPU可以支持多种神经网络模型,因其具备数以千计到数百万计的顶点数量,远远超过GPU的顶点规模,可以进行更高潜力的并行计算工作。

未来的AI计算领域,将是CPU、GPU、IPU并行

计算加上数据的突破可以让IPU在原生稀疏计算中展现出领先IPU 10-50倍的性能优势,到了数据稀疏以及动态稀疏时,IPU就有了比GPU越来越显著的优势。

此外,如果是在IPU更擅长的分组卷积内核中,组维度越少,IPU的性能优势越明显,总体而言,有4-100倍的吞吐量提升。

5G网络切片和资源管理中需要用到的强化学习,用IPU训练吞吐量也能够提升最多13倍。

两种芯片势能英伟达与Graphcore的较量

Graphcore成立于2016年,是一家专注于机器智能、同时也代表着全新计算负载的芯片制造公司,其包括IPU在内的产品研发擅长大规模并行计算、稀疏的数据结构、低精度计算、数据参数复用以及静态图结构。

英伟达的潜在竞争对手Graphcore的第二代IPU在多个主流模型上的表现优于A100 GPU,两者将在超大规模数据中心正面竞争。

未来,IPU可能在一些新兴的AI应用中展现出更大的优势。

未来的AI计算领域,将是CPU、GPU、IPU并行

第二代IPU相比第一代IPU有两倍峰值算力的提升,在典型的CV还有NLP的模型中,第二代IPU相比第一代IPU则展现出了平均8倍的性能提升。

如果对比英伟达基于8个最新A100 GPU的DGX-A100,Graphcore 8个M2000组成的系统的FP32算力是DGX-A100的12倍,AI计算是3倍,AI存储是10倍。

AI计算未来有三种计算平台

第一种平台是CPU,它还会持续存在,因为一些业务在CPU上的表现依然不错;

第二种平台是GPU,它还会持续发展,会有适合GPU的应用场景。

第三种平台是就是Graphcore的IPU。

IPU旨在帮助创新者在AI应用上实现新的突破,帮助用户应对当前在CPU、GPU上表现不太好的任务或者阻碍大家创新的场景。”卢涛副总指出。

目前GPU在全球已是大规模的商用部署,其次是Google的TPU通过内部应用及TensorFlow的生态占第二大规模,IPU处于第三,是量产的、部署的平台。

与此同时,Graphcore也在中国积极组建其创新社区。Graphcore已在微信、知乎、微博和GitHub开通了官方频道,旨在与开发者、创新者、研究者更好地交流和互动。

关于未来的AI计算领域,未来会是 “CPU、GPU、IPU并行” 的时代,GPU或部分CPU专注于业务场景的实现和落地,而IPU专为AI创新者带来更多突破。

未来的AI计算领域,将是CPU、GPU、IPU并行

构建生态链条IPU仍在路上

IPU想要在AI计算中拥有挑战GPU地位的资格,除了在性能和价格上面证明自己的优势之外,还需要在为机器学习框架提供的软件栈上提供更多选择,获得主流AI算法厂商的支持。

在标准生态、操作系统上也需要有广泛的支持,对于开发者有更方便的开发工具和社区内容的支持,才能从实际应用中壮大IPU的开发生态。

一个AI芯片从产出到大规模应用必须要经过一系列的中间环节,包括像上面提到的支持主流算法框架的软件库、工具链、用户生态等等,打通这样一条链条都会面临一个巨大挑战。

目前申请使用Graphcore IPU开发者云的主要是商业用户和高校,个人研究者比较少。IPU开发者云支持当前一些最先进和最复杂的AI算法模型的训练和推理。

和本世纪初的GPU市场一样,在AI芯片市场步入弱编程阶段,如今百家争鸣的局面预计也将很快结束,市场在一轮厮杀后会剩下为数不多的参与者做最终对决。

现在要看的是在发展初期的逐一击破阶段,Graphcore是否真有定义并主控第三类芯片的魄力了。

不过从创新的架构到芯片再到成为革命性的产品,Graphcore从芯片到落地之间的距离,需要易用的软件和丰富的工具来支持,特别是对软件生态依赖程度比较到的云端芯片市场。

结尾:

IPU不是GPU,这个可能是最大的一个挑战,但同时也是最大的一个机会。IPU并不是GPU的替代品或者类似品,所以不能拿GPU的逻辑来套用IPU的逻辑。

近两年,AI 芯片出现了各种品类的井喷,可以预计未来IPU在各类AI应用中将具有更大的优势。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    10824

    浏览量

    211088
  • gpu
    gpu
    +关注

    关注

    28

    文章

    4700

    浏览量

    128672
  • AI
    AI
    +关注

    关注

    87

    文章

    30072

    浏览量

    268335
收藏 人收藏

    评论

    相关推荐

    PyTorch GPU 加速训练模型方法

    的基本原理 GPU(图形处理单元)最初是为图形渲染设计的,但随着技术的发展,人们发现GPU并行计算方面有着天然的优势。GPU拥有成千上万个核心,可以同时处理大量数据,这使得它在进行矩
    的头像 发表于 11-05 17:43 439次阅读

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】--了解算力芯片GPU

    每个CUDA单元在 OpenCL 编程框架中都有对应的单元。 倒金字塔结构GPU存储体系 共享内存是开发者可配置的编程资源,使用门槛较高,编程上需要更多的人工显式处理。 在并行计算架构中,线程
    发表于 11-03 12:55

    GPU加速计算平台是什么

    GPU加速计算平台,简而言之,是利用图形处理器(GPU)的强大并行计算能力来加速科学计算、数据分析、机器学习等复杂
    的头像 发表于 10-25 09:23 210次阅读

    为什么ai模型训练要用gpu

    GPU凭借其强大的并行处理能力和高效的内存系统,已成为AI模型训练不可或缺的重要工具。
    的头像 发表于 10-24 09:39 190次阅读

    名单公布!【书籍评测活动NO.43】 算力芯片 | 高性能 CPU/GPU/NPU 微架构分析

    ,即大模型专用AI超级计算机的中枢核心。 作者介绍: 濮元恺,曾就职于中关村在线核心硬件事业部,负责CPUGPU类产品评测,长期关注GPGPU
    发表于 09-02 10:09

    ai服务器是什么架构类型

    架构的AI服务器通常具有较高的通用性,可以运行各种人工智能算法。但是,CPU架构的AI服务器在处理大规模并行计算时,性能可能不如GPU架构的
    的头像 发表于 07-02 09:51 920次阅读

    CPU渲染和GPU渲染优劣分析

    使用计算机进行渲染时,有两种流行的系统:基于中央处理单元(CPU)或基于图形处理单元(GPU)。CPU渲染利用计算机的
    的头像 发表于 05-23 08:27 526次阅读
    <b class='flag-5'>CPU</b>渲染和<b class='flag-5'>GPU</b>渲染优劣分析

    为什么跑AI往往用GPU而不是CPU

    GPU的能力,并且支持的GPU数量越多,就代表其AI性能越强大。那么问题来了,为什么是GPU而不是CPU
    的头像 发表于 04-24 08:27 1767次阅读
    为什么跑<b class='flag-5'>AI</b>往往用<b class='flag-5'>GPU</b>而不是<b class='flag-5'>CPU</b>?

    FPGA的力量:2024年AI计算领域的黑马?

    随着人工智能(AI)的快速发展,其对计算能力的需求也在持续增长。传统的中央处理器(CPU)和图形处理器(GPU)虽然在AI
    的头像 发表于 03-07 09:37 865次阅读
    FPGA的力量:2024年<b class='flag-5'>AI</b><b class='flag-5'>计算</b><b class='flag-5'>领域</b>的黑马?

    gpu是什么和cpu的区别

    GPUCPU是两种常见的计算机处理器,它们在结构和功能上有很大的区别。在这篇文章中,我们将探讨GPUCPU的区别,并详细介绍它们的原理、
    的头像 发表于 02-20 11:24 1.8w次阅读

    gpu服务器是干什么的 gpu服务器与cpu服务器的区别有哪些

    处理器是GPU还是CPU,以及它们的计算方法和应用领域。 首先,让我们了解一下何为GPUGPU
    的头像 发表于 01-30 15:31 808次阅读

    为什么GPUCPU更快?

    GPUCPU更快的原因并行处理能力:GPU可以同时处理多个任务和数据,而CPU通常只能一次处理一项任务。这是因为
    的头像 发表于 01-26 08:30 2222次阅读
    为什么<b class='flag-5'>GPU</b>比<b class='flag-5'>CPU</b>更快?

    CPUGPU与TPU之间有什么区别?

    机系统的核心,用于执行程序中的指令,控制和协调系统的各种操作。CPU具有通用性,并且能够以高度灵活的方式处理各种计算任务。 GPU(Graphics Processing Unit,图形处理器)是一种专用处理器,主要用于图形渲染
    的头像 发表于 12-15 10:10 6531次阅读

    ASIC和GPU,谁才是AI计算的最优解?

    电子发烧友网报道(文/周凯扬)随着AI计算开始有着风头盖过通用计算开始,不少芯片厂商都将其视为下一轮技术革新。CPUGPU、FPGA和AS
    的头像 发表于 12-03 08:31 2014次阅读
    ASIC和<b class='flag-5'>GPU</b>,谁才是<b class='flag-5'>AI</b><b class='flag-5'>计算</b>的最优解?

    gpu服务器是干什么的 gpu服务器与cpu服务器的区别

     相比于传统的CPU服务器,GPU服务器支持同时计算大量相似的计算操作,可以实现更强的并行计算性能。GP
    的头像 发表于 12-02 17:20 1854次阅读