0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

自然和人工智能网络以相同方式处理视觉图像的3D片段

姚小熊27 来源:新经网 作者:新经网 2020-10-26 15:56 次阅读

大脑在物体视觉的开始阶段就检测3D形状碎片(凹凸,空心,轴,球体),这是一种新发现的自然智能策略,约翰·霍普金斯大学的研究人员也在训练有素的视觉网络人工智能网络中发现了这种策略。

《当前生物学》上的一篇新论文详细介绍了V4区域中的神经元,这是大脑对象视觉通路的第一个阶段,它代表3D形状碎片,而不仅仅是过去40年用于研究V4的2D形状。然后,约翰·霍普金斯大学的研究人员在高级计算机视觉网络AlexNet的早期(第3层)中识别出了几乎相同的人造神经元反应。在自然和人工视觉中,尽早检测3D形状大概有助于解释现实世界中的实体3D对象。

Zanvyl Krieger思维/大脑研究所所长,神经科学教授Ed Connor说:“我很早就看到V4发出清晰,清晰的3D形状信号,”。“但是在一百万年中,我从未想过您会在AlexNet中看到同样的事情,AlexNet仅受过训练,可以将2D照片转换为对象标签。”

人工智能的长期挑战之一是复制人类的视觉。诸如AlexNet之类的深度(多层)网络已经在对象识别方面取得了重大进展,这是基于为游戏开发的高容量图形处理单元(GPU)和互联网上爆炸的图像和视频所提供的大规模培训集的。

康纳和他的团队对自然和人工神经元进行了相同的图像响应测试,并在V4和AlexNet层3中发现了非常相似的响应模式。这解释了康纳所描述的大脑之间“怪异的对应关系”-这是进化和进化的产物。终身学习-和AlexNet-由计算机科学家设计并受过训练以标记物体照片?

Connor说,AlexNet和类似的深度网络实际上是部分基于大脑中的多阶段视觉网络而设计的。他说,他们观察到的密切相似之处可能表明将来有机会利用自然与人工智能之间的相关性。

康纳说:“人工网络是当前最有前途的理解大脑的模型。相反,大脑是使人工智能更接近自然智能的最佳策略来源。”
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络
    +关注

    关注

    14

    文章

    7513

    浏览量

    88610
  • 人工智能
    +关注

    关注

    1791

    文章

    46838

    浏览量

    237496
收藏 人收藏

    评论

    相关推荐

    【每天学点AI】实战图像增强技术在人工智能图像处理中的应用

    图像增强(ImageEnhancement)是人工智能和计算机视觉中一项重要的技术,也是人工智能数据集预处理的一个重要步骤。它旨在提高
    的头像 发表于 11-22 17:14 127次阅读
    【每天学点AI】实战<b class='flag-5'>图像</b>增强技术在<b class='flag-5'>人工智能</b><b class='flag-5'>图像</b><b class='flag-5'>处理</b>中的应用

    嵌入式和人工智能究竟是什么关系?

    、连接主义和深度学习等不同的阶段。目前,人工智能已经广泛应用于各种领域,如自然语言处理、计算机视觉智能推荐等。 嵌入式系统和
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量数据,发现传统方法难以捕捉的模式和规律。这不仅极大地提高了数据
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    长时间运行或电池供电的设备尤为重要。 高性能 : 尽管RISC-V架构低功耗著称,但其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能
    发表于 09-28 11:00

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    图像识别技术包括自然语言处理

    图像识别技术与自然语言处理人工智能领域的两个重要分支,它们在很多方面有着密切的联系,但也存在一些区别。 一、图像识别技术与
    的头像 发表于 07-16 10:54 626次阅读

    图像识别属于人工智能

    的过程。它涉及到图像的获取、预处理、特征提取、分类和识别等多个环节。 1.2 重要性 图像识别技术在人工智能领域具有重要的地位,它使计算机能够“看”和“理解”
    的头像 发表于 07-16 10:44 939次阅读

    机器视觉人工智能的关系与应用

    视觉信息的技术。它涉及到图像的获取、处理、分析和解释,实现对物体、场景和事件的识别、定位、测量和分类。机器视觉系统通常由
    的头像 发表于 07-16 10:27 771次阅读

    人工智能神经网络芯片的介绍

    人工智能神经网络芯片是一类专门为深度学习和神经网络算法设计的处理器。它们具有高性能、低功耗、可扩展等特点,广泛应用于图像识别、语音识别、
    的头像 发表于 07-04 09:33 577次阅读

    自然语言处理属于人工智能的哪个领域

    自然语言处理(Natural Language Processing,简称NLP)是人工智能(Artificial Intelligence,简称AI)领域的一个重要分支。它涉及到计算机与人类语言
    的头像 发表于 07-03 14:09 1120次阅读

    神经网络自然语言处理中的应用

    自然语言处理(NLP)是人工智能领域中的一个重要分支,它研究的是如何使计算机能够理解和生成人类自然语言。随着人工智能技术的飞速发展,神经
    的头像 发表于 07-01 14:09 430次阅读

    Cognex发布了In-Sight® L38 3D视觉系统,为3D检测设立新标准

    人工智能(AI)驱动的3D视觉系统为自动化制造提供快速部署和可靠的检测功能。
    的头像 发表于 04-15 09:04 429次阅读

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17

    一文了解3D视觉和2D视觉的区别

    一文了解3D视觉和2D视觉的区别 3D视觉和2D
    的头像 发表于 12-25 11:15 2863次阅读

    2D3D视觉技术的比较

    作为一个多年经验的机器视觉工程师,我将详细介绍2D3D视觉技术的不同特点、应用场景以及它们能够解决的问题。在这个领域内,2D
    的头像 发表于 12-21 09:19 1058次阅读