0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习:多目标跟踪方向调研报告

新机器视觉 来源:新机器视觉 作者:Harlek@知乎 2020-11-05 10:01 次阅读

导读

本文是一篇多目标跟踪方向的调研报告,从相关方向、核心步骤、评价指标和最新进展等维度出发,对MOT进行了全面的介绍,不仅适合作为入门科普,而且能够帮助大家加深理解。

最近做了一些多目标跟踪方向的调研,因此把调研的结果以图片加文字的形式展现出来,希望能帮助到入门这一领域的同学。也欢迎大家和我讨论关于这一领域的任何问题。

相关方向

这些是我所了解的多目标跟踪(MOT)的一些相关方向。其中单目标跟踪(VOT/SOT)、目标检测(detection)、行人重识别(Re-ID)都是非常热门的方向。而偏视频的相关方向就比较冷门。而且今年五月DukeMTMC因为隐私问题不再提供MTMCT的数据了,MTMCT的研究也是举步维艰。

核心步骤

MOT算法的通常工作流程:(1)给定视频的原始帧;(2)运行对象检测器以获得对象的边界框;(3)对于每个检测到的物体,计算出不同的特征,通常是视觉和运动特征;(4)之后,相似度计算步骤计算两个对象属于同一目标的概率;(5)最后,关联步骤为每个对象分配数字ID。

因此绝大多数MOT算法无外乎就这四个步骤:①检测 ②特征提取、运动预测 ③相似度计算 ④数据关联。 其中影响最大的部分在于检测,检测结果的好坏对于最后指标的影响是最大的。 但是,多目标追踪的研究重点又在相似度计算和数据关联这一块。所以就有一个很大的问题:你设计出更好的关联算法可能就提升了0.1个点,但别人用一些针对数据集的trick消除了一些漏检可能就能涨好几个点。所以研究更好的数据关联的回报收益很低。因此多目标追踪这一领域虽然工业界很有用,但学术界里因为指标数据集的一些原因,入坑前一定要三思。

评价指标

关于评价指标: 第一个是传统的标准,现在已经没人用了,就不介绍了。 第二个是06年提出的CLEAR MOT。现在用的最多的就是MOTA。但是这个指标FN、FP的权重占比很大,更多衡量的是检测的质量,而不是跟踪的效果。 第三个是16年提出的ID scores。因为都是基于匹配的指标,所以能更好的衡量数据关联的好坏。

数据集

数据集用的最多的是MOTChallenge,专注于行人追踪的。 第二个KITTI的是针对自动驾驶的数据集,有汽车也有行人,在MOT的论文里用的很少。 还有一些其他比较老的数据集现在都不用了。 15年的都是采集的老的数据集的视频做的修正。 16年的是全新的数据集,相比于15年的行人密度更高、难度更大。特别注意这个DPM检测器,效果非常的差,全是漏检和误检。 17年的视频和16年一模一样,只是提供了三个检测器,相对来说更公平。也是现在论文的主流数据集。 19年的是针对特别拥挤情形的数据集,只有CVPR19比赛时才能提交。

这个是MOT16公开检测器上的结果。可以看到从17年开始,MOTA就涨的很慢了。关注一下这个帧率有20Hz的算法MOTDT也是我后面要讲的一个。

这个是MOT16私有检测器上的结果。可以看到检测器性能的好坏对于结果的影响非常重要。SOTA算法换了私有检测器后性能直接涨了快20个点。

这个是MOT17公开检测器上这几年比较突出的算法。注意因为这个数据集用了三个检测器,所以FP、FN这些指标也都几乎是16数据集的三倍。

SORT和DeepSORT

关键算法

从这两个工业界关注度最高的算法说起。 SORT作为一个粗略的框架,核心就是两个算法:卡尔曼滤波和匈牙利匹配。卡尔曼滤波分为两个过程:预测和更新。预测过程:当一个小车经过移动后,且其初始定位和移动过程都是高斯分布时,则最终估计位置分布会更分散,即更不准确;更新过程:当一个小车经过传感器观测定位,且其初始定位和观测都是高斯分布时,则观测后的位置分布会更集中,即更准确。匈牙利算法解决的是一个分配问题。SK-learn库的linear_assignment___和scipy库的linear_sum_assignment都实现了这一算法,只需要输入cost_matrix即代价矩阵就能得到最优匹配。

不过要注意的是这两个库函数虽然算法一样,但给的输出格式不同。具体算法步骤也很简单,是一个复杂度的算法。 DeepSORT的优化主要就是基于匈牙利算法里的这个代价矩阵。它在IOU Match之前做了一次额外的级联匹配,利用了外观特征和马氏距离。外观特征就是通过一个Re-ID的网络提取的,而提取这个特征的过程和NLP里词向量的嵌入过程(embedding)很像,所以后面有的论文也把这个步骤叫做嵌入(起源应该不是NLP,但我第一次接触embedding是从NLP里)。然后是因为欧氏距离忽略空间域分布的计算结果,所以增加里马氏距离作为运动信息的约束。

SORT

这个SORT的流程图非常重要,可以看到整体可以拆分为两个部分,分别是匹配过程和卡尔曼预测加更新过程,都用灰色框标出来了。一定要把整个流程弄明白。后面的多目标追踪的大框架基本都由此而来。 关键步骤:轨迹卡尔曼滤波预测→ 使用匈牙利算法将预测后的tracks和当前帧中的detecions进行匹配(IOU匹配) → 卡尔曼滤波更新对于没有匹配上的轨迹,也不是马上就删掉了,有个T_lost的保存时间,但SORT里把这个时间阈值设置的是1,也就是说对于没匹配上的轨迹相当于直接删了。 关于这点论文里的原话是:

首先,恒定速度模型不能很好地预测真实的动力学,其次,我们主要关注的是帧到帧的跟踪,其中对象的重新识别超出了本文的范围。

这篇文章的机翻在《SORT》论文翻译

DeepSORT

这是DeepSORT算法的流程图,和SORT基本一样,就多了级联匹配(Matching Cascade)和新轨迹的确认(confirmed)。 这篇文章的机翻在《DeepSORT》论文翻译 关键步骤:轨迹卡尔曼滤波预测→ 使用匈牙利算法将预测后的tracks和当前帧中的detecions进行匹配(级联匹配和IOU匹配) → 卡尔曼滤波更新级联匹配是核心,就是红色部分,DeepSORT的绝大多数创新点都在这里面,具体过程看下一张图。 关于为什么新轨迹要连续三帧命中才确认?个人认为有这样严格的条件和测试集有关系。因为测试集给的检测输入非常的差,误检有很多,因此轨迹的产生必须要更严格的条件。

级联匹配流程图里上半部分就是特征提取和相似度估计,也就是算这个分配问题的代价函数。主要由两部分组成:代表运动模型的马氏距离和代表外观模型的Re-ID特征。 级联匹配流程图里下半部分数据关联作为流程的主体。为什么叫级联匹配,主要是它的匹配过程是一个循环。从missing age=0的轨迹(即每一帧都匹配上,没有丢失过的)到missing age=30的轨迹(即丢失轨迹的最大时间30帧)挨个的和检测结果进行匹配。也就是说,对于没有丢失过的轨迹赋予优先匹配的权利,而丢失的最久的轨迹最后匹配。 论文关于参数λ(运动模型的代价占比)的取值是这么说的:

在我们的实验中,我们发现当相机运动明显时,将λ= 0设置是一个合理的选择。

因为相机抖动明显,卡尔曼预测所基于的匀速运动模型并不work,所以马氏距离其实并没有什么作用。但注意也不是完全没用了,主要是通过阈值矩阵(Gate Matrix)对代价矩阵(Cost Matrix)做了一次阈值限制。 关于DeepSORT算法的详细代码解读我比较推荐:目标跟踪初探(DeepSORT) 但关于卡尔曼滤波的公式讲的不是很详细,具体推导可以看看 Kalman Filter 卡尔曼滤波

改进策略

看到这个DeepSORT的流程图不知道大家可以想到什么优化的地方?其实有几个点是很容易想到的。

第一点,把Re-ID网络和检测网络融合,做一个精度和速度的trade off; 第二点,对于轨迹段来说,时间越长的轨迹是不是更应该得到更多的信任,不仅仅只是级联匹配的优先级,由此可以引入轨迹评分的机制; 第三点,从直觉上来说,检测和追踪是两个相辅相成的问题,良好的追踪可以弥补检测的漏检,良好的检测可以防止追踪的轨道飘逸,用预测来弥补漏检这个问题在DeepSORT里也并没有考虑; 第四点,DeepSORT里给马氏距离也就是运动模型设置的系数为0,也就是说在相机运动的情况下线性速度模型并不work,所以是不是可以找到更好的运动模型。

最新进展

这是最近比较新的一些方法。 工业界青睐的算法在学术界其实并不重视,一方面是因为开源的原因,另一方面可以看到顶会的算法都不是注重速度的,通常用了很复杂的模块和trick来提升精度。 而且这些trick不是一般意义的trick了,是针对这个数据集的或者说针对糟糕检测器的一些trick, 对于实际应用几乎没有帮助。 第一篇论文是基于DeepSORT改进的,它的创新点在于引入了轨迹评分机制,时间越久的轨迹可信度就越高,基于这个评分就可以把轨迹产生的预测框和检测框放一起做一个NMS,相当于是用预测弥补了漏检。 第二篇论文是今年9月份发在arxiv上的一篇论文,它的工作是把检测网络和嵌入网络结合起来,追求的是速度和精度的trade off。

MOTDT

这是刚才列举的第一篇论文(MOTDT)的流程图,大概和DeepSORT差不多。这个图画的比较简单,其实在NMS之前有个基于SqueezeNet的区域选择网络R-FCN和轨迹评分的机制。这两个东西的目的就是为了产生一个统一检测框和预测框的标准置信度,作为NMS的输入。 这篇文章的翻译在《Real-Time Multiple People Tracking With Deeply Learned Candidate Selection And Person Re-ID》论文翻译

JDE

这是刚才第二篇论文(JDE)里的结构图。这个方法是基于YOLOv3和MOTDT做的。它网络前面都和YOLOv3一样的,主要就是在特征图里多提取了一个嵌入(embedding)向量,采取的是类似于交叉熵的triplet loss。因为是多任务学习,这篇论文还用了一篇18年的论文提出来的自动学习损失权重方案:通过学习一组辅助参数自动地对非均匀损失进行加权。最后的结果是精度上差不太多,FPS高了很多。 这篇文章的翻译在 《Towards Real-Time Multi-Object Tracking》论文翻译

未来展望

最后用多目标追踪未来的一些思考作为结尾,这句话是最近的一篇关于多目标追踪的综述里的。 它在最后提出对未来的方向里有这样一句话,用深度学习来指导关联问题。其实现在基于检测的多目标追踪都是检测模块用深度学习,Re-ID模块用深度学习,而最核心的数据关联模块要用深度学习来解决是很困难的。现在有一些尝试是用RNN,但速度慢、效果不好,需要走的路都还很长。 我个人觉得短期内要解决实际问题,还是从Re-ID的方面下手思考怎样提取更有效的特征会更靠谱,用深度学习的方法来处理数据关联不是短时间能解决的。

参考文献:[1] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online and realtime tracking. In2016 IEEE International Conference on Image Processing (ICIP), pages 3464–3468. IEEE, 2016. [2] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a deep associationmetric. In2017 IEEE International Conference on Image Processing (ICIP), pages 3645–3649. IEEE, 2017. [3] Chen Long, Ai Haizhou, Zhuang Zijie, and Shang Chong. Real-time multiple people tracking with deeplylearned candidate selection and person re-identification. InICME, 2018. [4] Zhongdao Wang, Liang Zheng, Yixuan Liu, Shengjin Wang. Towards Real-Time Multi-Object Tracking. arXiv preprint arXiv:1909.12605 [5] Gioele Ciaparrone, Francisco Luque Sánchez, Siham Tabik, Luigi Troiano, Roberto Tagliaferri, Francisco Herrera. Deep Learning in Video Multi-Object Tracking: A Survey. arXiv preprint arXiv:1907.12740

责任编辑:xj

原文标题:基于深度学习的多目标跟踪(MOT)技术一览

文章出处:【微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4629

    浏览量

    93279
  • 目标跟踪
    +关注

    关注

    2

    文章

    88

    浏览量

    14912
  • 深度学习
    +关注

    关注

    73

    文章

    5512

    浏览量

    121476

原文标题:基于深度学习的多目标跟踪(MOT)技术一览

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    浅谈多目标优化约束条件下充电设施有序充电控制策略

    随着电动汽车的普及,充电设施的需求日益增长,如何在多目标优化约束下实现充电设施的有序充电成为亟待解决的问题。新能源汽车的快速发展为清洁能源和可持续交通带来了新机遇,但也引出了许多问题。其中,充电设施的有序充电控制策略在多目标优化约束条件下显得尤为重要。
    的头像 发表于 01-07 13:17 122次阅读
    浅谈<b class='flag-5'>多目标</b>优化约束条件下充电设施有序充电控制策略

    视频目标跟踪从0到1,概念与方法

    视觉目标跟踪的挑战和算法模型,最后,我们将介绍最流行的基于深度学习目标跟踪方法,包括MDNET
    的头像 发表于 11-20 01:06 452次阅读
    视频<b class='flag-5'>目标</b><b class='flag-5'>跟踪</b>从0到1,概念与方法

    使用STT全面提升自动驾驶中的多目标跟踪

    3D多目标跟踪(3D MOT)在各种机器人应用中发挥着关键作用,例如自动驾驶车辆。为了在驾驶时避免碰撞,机器人汽车必须可靠地跟踪道路上的物体,并准确估计它们的运动状态,例如速度和加速度。
    的头像 发表于 10-28 10:07 321次阅读
    使用STT全面提升自动驾驶中的<b class='flag-5'>多目标</b><b class='flag-5'>跟踪</b>

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 489次阅读

    FPGA加速深度学习模型的案例

    FPGA(现场可编程门阵列)加速深度学习模型是当前硬件加速领域的一个热门研究方向。以下是一些FPGA加速深度学习模型的案例: 一、基于FPG
    的头像 发表于 10-25 09:22 340次阅读

    深度识别与多目标识别传感器的区别

    深度识别与多目标识别是两个在计算机视觉和传感器技术领域中非常重要的概念。它们在自动驾驶、机器人导航、工业自动化、安防监控等多个领域有着广泛的应用。 深度识别 深度识别,通常指的是通过传
    的头像 发表于 09-10 14:52 462次阅读

    多目标智能识别系统

    。以下是关于多目标智能识别系统的详细解析: 智慧华盛恒辉系统原理 多目标智能识别系统的核心原理基于图像处理、机器学习深度学习等技术。系统通
    的头像 发表于 07-16 10:42 1.5w次阅读

    深度学习中的时间序列分类方法

    的发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类中的应用进行综述,探讨常用的深度
    的头像 发表于 07-09 15:54 1139次阅读

    深度学习与nlp的区别在哪

    深度学习和自然语言处理(NLP)是计算机科学领域中两个非常重要的研究方向。它们之间既有联系,也有区别。本文将介绍深度学习与NLP的区别。
    的头像 发表于 07-05 09:47 1050次阅读

    基于深度学习的小目标检测

    )的广泛应用,小目标检测的性能得到了显著提升。本文将详细探讨基于深度学习的小目标检测技术,包括其定义、挑战、常用方法以及未来发展方向
    的头像 发表于 07-04 17:25 1042次阅读

    基于GIS的SAR多目标智能识别系统

    智慧华盛恒辉基于GIS的SAR多目标智能识别系统是一个集成了合成孔径雷达(SAR)和地理信息系统(GIS)技术的先进系统,旨在实现高分辨率雷达图像中的多目标智能识别。以下是该系统的详细介绍: 智慧华
    的头像 发表于 06-26 14:26 552次阅读

    深度学习芯片组行业市场规模分析及发展趋势预测报告

    据GIR (Global Info Research)调研,按收入计,2023年全球深度学习芯片组收入大约3322.4百万美元,预计2030年达到27870百万美元,2024至2030期间,年复合
    的头像 发表于 06-18 10:27 361次阅读

    多目标跟踪算法总结归纳

    多目标跟踪是计算机视觉领域中的一个重要任务,它旨在从视频或图像序列中准确地检测和跟踪多个移动目标。不过在落地部署时,有一些关键点需要解决。
    的头像 发表于 04-28 09:42 2135次阅读
    <b class='flag-5'>多目标</b><b class='flag-5'>跟踪</b>算法总结归纳

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度
    发表于 04-23 17:18 1374次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    深度学习检测小目标常用方法

    深度学习的效果在某种意义上是靠大量数据喂出来的,小目标检测的性能同样也可以通过增加训练集中小目标样本的种类和数量来提升。
    发表于 03-18 09:57 809次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>检测小<b class='flag-5'>目标</b>常用方法