YOLO系列是基于深度学习的回归方法。
RCNN, Fast-RCNN,Faster-RCNN是基于深度学习的分类方法。 YOLO官网:https://github.com/pjreddie/darknet
YOLOV1
论文下载:https://arxiv.org/abs/1506.02640代码下载:https://github.com/pjreddie/darknet 核心思想:将整张图片作为网络的输入(类似于Faster-RCNN),直接在输出层对BBox的位置和类别进行回归。
实现方法
将一幅图像分成SxS个网格(grid cell),如果某个object的中心 落在这个网格中,则这个网格就负责预测这个object。
每个网络需要预测B个BBox的位置信息和confidence(置信度)信息,一个BBox对应着四个位置信息和一个confidence信息。confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。则SxS个网格,每个网格要预测B个bounding box还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS处理,就得到最终的检测结果。
损失函数
在实现中,最主要的就是怎么设计损失函数,让这个三个方面得到很好的平衡。作者简单粗暴的全部采用了sum-squared error loss来做这件事。这种做法存在以下几个问题:
第一,8维的localization error和20维的classification error同等重要显然是不合理的;
第二,如果一个网格中没有object(一幅图中这种网格很多),那么就会将这些网格中的box的confidence push到0,相比于较少的有object的网格,这种做法是overpowering的,这会导致网络不稳定甚至发散。
解决办法:
更重视8维的坐标预测,给这些损失前面赋予更大的loss weight。
对没有object的box的confidence loss,赋予小的loss weight。
有object的box的confidence loss和类别的loss的loss weight正常取1。
对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。 为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。(也是个近似逼近方式)
一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。 最后整个的损失函数如下所示:
这个损失函数中:
只有当某个网格中有object的时候才对classification error进行惩罚。
只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
其他细节,例如使用激活函数使用leak RELU,模型用ImageNet预训练等等
缺点
由于输出层为全连接层,因此在检测时,YOLO训练模型只支持与训练图像相同的输入分辨率。
虽然每个格子可以预测B个bounding box,但是最终只选择只选择IOU最高的bounding box作为物体检测输出,即每个格子最多只预测出一个物体。当物体占画面比例较小,如图像中包含畜群或鸟群时,每个格子包含多个物体,但却只能检测出其中一个。这是YOLO方法的一个缺陷。
YOLO loss函数中,大物体IOU误差和小物体IOU误差对网络训练中loss贡献值接近(虽然采用求平方根方式,但没有根本解决问题)。因此,对于小物体,小的IOU误差也会对网络优化过程造成很大的影响,从而降低了物体检测的定位准确性。
YOLOv2(YOLO9000)
文章提出了一种新的训练方法–联合训练算法,这种算法可以把这两种的数据集混合到一起。使用一种分层的观点对物体进行分类,用巨量的分类数据集数据来扩充检测数据集,从而把两种不同的数据集混合起来。 联合训练算法的基本思路就是:同时在检测数据集和分类数据集上训练物体检测器(Object Detectors ),用检测数据集的数据学习物体的准确位置,用分类数据集的数据来增加分类的类别量、提升健壮性。YOLO9000就是使用联合训练算法训练出来的,他拥有9000类的分类信息,这些分类信息学习自ImageNet分类数据集,而物体位置检测则学习自COCO检测数据集。
改进
Batch Normalization使用Batch Normalization对网络进行优化,让网络提高了收敛性,同时还消除了对其他形式的正则化(regularization)的依赖。通过对YOLO的每一个卷积层增加Batch Normalization,最终使得mAP提高了2%,同时还使model正则化。使用Batch Normalization可以从model中去掉Dropout,而不会产生过拟合。High resolution classifier目前业界标准的检测方法,都要先把分类器(classifier)放在ImageNet上进行预训练。从Alexnet开始,大多数的分类器都运行在小于256*256的图片上。而现在YOLO从224*224增加到了448*448,这就意味着网络需要适应新的输入分辨率。
为了适应新的分辨率,YOLO v2的分类网络以448*448的分辨率先在ImageNet上进行Fine Tune,Fine Tune10个epochs,让网络有时间调整他的滤波器(filters),好让其能更好的运行在新分辨率上,还需要调优用于检测的Resulting Network。最终通过使用高分辨率,mAP提升了4%。Convolution with anchor boxesYOLOV1包含有全连接层,从而能直接预测Bounding Boxes的坐标值。Faster R-CNN的方法只用卷积层与Region Proposal Network来预测Anchor Box的偏移值与置信度,而不是直接预测坐标值。作者发现通过预测偏移量而不是坐标值能够简化问题,让神经网络学习起来更容易。
所以最终YOLO去掉了全连接层,使用Anchor Boxes来预测 Bounding Boxes。作者去掉了网络中一个Pooling层,这让卷积层的输出能有更高的分辨率。收缩网络让其运行在416*416而不是448*448。由于图片中的物体都倾向于出现在图片的中心位置,特别是那种比较大的物体,所以有一个单独位于物体中心的位置用于预测这些物体。YOLO的卷积层采用32这个值来下采样图片,所以通过选择416*416用作输入尺寸最终能输出一个13*13的Feature Map。
使用Anchor Box会让精确度稍微下降,但用了它能让YOLO能预测出大于一千个框,同时recall达到88%,mAP达到69.2%。Dimension clusters之前Anchor Box的尺寸是手动选择的,所以尺寸还有优化的余地。为了优化,在训练集(training set)Bounding Boxes上跑了一下k-means聚类,来找到一个比较好的值。 如果我们用标准的欧式距离的k-means,尺寸大的框比小框产生更多的错误。因为我们的目的是提高IOU分数,这依赖于Box的大小,所以距离度量的使用:
通过分析实验结果(Figure 2),左图:在model复杂性与high recall之间权衡之后,选择聚类分类数K=5。右图:是聚类的中心,大多数是高瘦的Box。 Table1是说明用K-means选择Anchor Boxes时,当Cluster IOU选择值为5时,AVG IOU的值是61,这个值要比不用聚类的方法的60.9要高。选择值为9的时候,AVG IOU更有显著提高。总之就是说明用聚类的方法是有效果的。
Direct location prediction
用Anchor Box的方法,会让model变得不稳定,尤其是在最开始的几次迭代的时候。大多数不稳定因素产生自预测Box的(x,y)位置的时候。按照之前YOLO的方法,网络不会预测偏移量,而是根据YOLO中的网格单元的位置来预测坐标,这就让Ground Truth的值介于0到1之间。而为了让网络的结果能落在这一范围内,网络使用一个 Logistic Activation来对于网络预测结果进行限制,让结果介于0到1之间。网络在每一个网格单元中预测出5个Bounding Boxes,每个Bounding Boxes有五个坐标值tx,ty,tw,th,t0,他们的关系见下图(Figure3)。假设一个网格单元对于图片左上角的偏移量是cx,cy,Bounding Boxes Prior的宽度和高度是pw,ph,那么预测的结果见下图右面的公式:
因为使用了限制让数值变得参数化,也让网络更容易学习、更稳定。Fine-Grained FeaturesYOLO修改后的Feature Map大小为13*13,这个尺寸对检测图片中尺寸大物体来说足够了,同时使用这种细粒度的特征对定位小物体的位置可能也有好处。Faster R-CNN、SSD都使用不同尺寸的Feature Map来取得不同范围的分辨率,而YOLO采取了不同的方法,YOLO加上了一个Passthrough Layer来取得之前的某个26*26分辨率的层的特征。
这个Passthrough layer能够把高分辨率特征与低分辨率特征联系在一起,联系起来的方法是把相邻的特征堆积在不同的Channel之中,这一方法类似与Resnet的Identity Mapping,从而把26*26*512变成13*13*2048。YOLO中的检测器位于扩展后(expanded )的Feature Map的上方,所以他能取得细粒度的特征信息,这提升了YOLO 1%的性能。Multi-ScaleTraining作者希望YOLO v2能健壮的运行于不同尺寸的图片之上,所以把这一想法用于训练model中。 区别于之前的补全图片的尺寸的方法,YOLO v2每迭代几次都会改变网络参数。
每10个Batch,网络会随机地选择一个新的图片尺寸,由于使用了下采样参数是32,所以不同的尺寸大小也选择为32的倍数{320,352…..608},最小320*320,最大608*608,网络会自动改变尺寸,并继续训练的过程。 这一政策让网络在不同的输入尺寸上都能达到一个很好的预测效果,同一网络能在不同分辨率上进行检测。当输入图片尺寸比较小的时候跑的比较快,输入图片尺寸比较大的时候精度高,所以你可以在YOLO v2的速度和精度上进行权衡。 Figure4,Table 3:在voc2007上的速度与精度
YOLOV3
YOLO v3的模型比之前的模型复杂了不少,可以通过改变模型结构的大小来权衡速度与精度。 速度对比如下:
简而言之,YOLOv3 的先验检测(Prior detection)系统将分类器或定位器重新用于执行检测任务。他们将模型应用于图像的多个位置和尺度。而那些评分较高的区域就可以视为检测结果。此外,相对于其它目标检测方法,我们使用了完全不同的方法。我们将一个单神经网络应用于整张图像,该网络将图像划分为不同的区域,因而预测每一块区域的边界框和概率,这些边界框会通过预测的概率加权。我们的模型相比于基于分类器的系统有一些优势。它在测试时会查看整个图像,所以它的预测利用了图像中的全局信息。与需要数千张单一目标图像的 R-CNN 不同,它通过单一网络评估进行预测。这令 YOLOv3 非常快,一般它比 R-CNN 快 1000 倍、比 Fast R-CNN 快 100 倍。
改进之处
多尺度预测 (类FPN)
更好的基础分类网络(类ResNet)和分类器 darknet-53,见下图。
分类器-类别预测。
YOLOv3不使用Softmax对每个框进行分类,主要考虑因素有两个:
Softmax使得每个框分配一个类别(score最大的一个),而对于Open Images这种数据集,目标可能有重叠的类别标签,因此Softmax不适用于多标签分类。
Softmax可被独立的多个logistic分类器替代,且准确率不会下降。
分类损失采用binary cross-entropy loss。
多尺度预测
每种尺度预测3个box, anchor的设计方式仍然使用聚类,得到9个聚类中心,将其按照大小均分给3个尺度.
尺度1: 在基础网络之后添加一些卷积层再输出box信息.
尺度2: 从尺度1中的倒数第二层的卷积层上采样(x2)再与最后一个16x16大小的特征图相加,再次通过多个卷积后输出box信息.相比尺度1变大两倍.
尺度3: 与尺度2类似,使用了32x32大小的特征图.
参见网络结构定义文件https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg 基础网络 Darknet-53
darknet-53
仿ResNet, 与ResNet-101或ResNet-152准确率接近,但速度更快.对比如下:
主干架构的性能对比
检测结构如下:
YOLOv3在mAP@0.5及小目标APs上具有不错的结果,但随着IOU的增大,性能下降,说明YOLOv3不能很好地与ground truth切合.
边框预测
图 2:带有维度先验和定位预测的边界框。我们边界框的宽和高以作为离聚类中心的位移,并使用 Sigmoid 函数预测边界框相对于滤波器应用位置的中心坐标。 仍采用之前的logis,其中cx,cy是网格的坐标偏移量,pw,ph是预设的anchor box的边长.最终得到的边框坐标值是b*,而网络学习目标是t*,用sigmod函数、指数转换。优点
快速,pipline简单.
背景误检率低。
通用性强。YOLO对于艺术类作品中的物体检测同样适用。它对非自然图像物体的检测率远远高于DPM和RCNN系列检测方法。
但相比RCNN系列物体检测方法,YOLO具有以下缺点:
识别物体位置精准性差。
召回率低。在每个网格中预测两个box这种约束方式减少了对同一目标的多次检测(R-CNN使用的region proposal方式重叠较多),相比R-CNN使用Selective Search产生2000个proposal(RCNN测试时每张超过40秒),yolo仅使用7x7x2个.
YOLOV4
YOLOv4: Optimal Speed and Accuracy of Object Detection 论文:https://arxiv.org/abs/2004.10934 代码:https://github.com/AlexeyAB/darknet YOLOv4!
YOLOv4 在COCO上,可达43.5% AP,速度高达 65 FPS! YOLOv4的特点是集大成者,俗称堆料。但最终达到这么高的性能,一定是不断尝试、不断堆料、不断调参的结果,给作者点赞。下面看看堆了哪些料:
Weighted-Residual-Connections (WRC)
Cross-Stage-Partial-connections (CSP)
Cross mini-Batch Normalization (CmBN)
Self-adversarial-training (SAT)
Mish-activation
Mosaic data augmentation
CmBN
DropBlock regularization
CIoU loss
本文的主要贡献如下: 1. 提出了一种高效而强大的目标检测模型。它使每个人都可以使用1080 Ti或2080 Ti GPU 训练超快速和准确的目标检测器(牛逼!)。 2. 在检测器训练期间,验证了SOTA的Bag-of Freebies 和Bag-of-Specials方法的影响。 3. 改进了SOTA的方法,使它们更有效,更适合单GPU训练,包括CBN [89],PAN [49],SAM [85]等。文章将目前主流的目标检测器框架进行拆分:input、backbone、neck 和 head. 具体如下图所示:
对于GPU,作者在卷积层中使用:CSPResNeXt50 / CSPDarknet53
对于VPU,作者使用分组卷积,但避免使用(SE)块-具体来说,它包括以下模型:EfficientNet-lite / MixNet / GhostNet / MobileNetV3
作者的目标是在输入网络分辨率,卷积层数,参数数量和层输出(filters)的数量之间找到最佳平衡。 总结一下YOLOv4框架:
Backbone:CSPDarknet53
Neck:SPP,PAN
Head:YOLOv3
YOLOv4 =CSPDarknet53+SPP+PAN+YOLOv3 其中YOLOv4用到相当多的技巧:
用于backbone的BoF:CutMix和Mosaic数据增强,DropBlock正则化,Class label smoothing
用于backbone的BoS:Mish激活函数,CSP,MiWRC
用于检测器的BoF:CIoU-loss,CmBN,DropBlock正则化,Mosaic数据增强,Self-Adversarial 训练,消除网格敏感性,对单个ground-truth使用多个anchor,Cosine annealing scheduler,最佳超参数,Random training shapes
用于检测器的Bos:Mish激活函数,SPP,SAM,PAN,DIoU-NMS
看看YOLOv4部分组件:
感受一下YOLOv4实验的充分性(调参的艺术):
感受一下性能炸裂的YOLOv4实验结果:
YOLO v.s Faster R-CNN
1.统一网络:YOLO没有显示求取region proposal的过程。Faster R-CNN中尽管RPN与fast rcnn共享卷积层,但是在模型训练过程中,需要反复训练RPN网络和fast rcnn网络.相对于R-CNN系列的"看两眼"(候选框提取与分类),YOLO只需要Look Once. 2. YOLO统一为一个回归问题,而R-CNN将检测结果分为两部分求解:物体类别(分类问题),物体位置即bounding box(回归问题)。
参考
1. V1,V2,V3转载地址: https://blog.csdn.net/App_12062011/article/details/77554288 2. V4转载地址: https://mp.weixin.qq.com/s/Ua3T-DOuzmLWuXfohEiVFw
责任编辑:xj
原文标题:YOLO系列:V1,V2,V3,V4简介
文章出处:【微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。
-
数据
+关注
关注
8文章
6854浏览量
88777 -
深度学习
+关注
关注
73文章
5485浏览量
120937 -
yolo2
+关注
关注
0文章
3浏览量
2069
原文标题:YOLO系列:V1,V2,V3,V4简介
文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论