0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

以NPU为首的AI芯片们,还有很长的路要走

ss 来源:镁客maker网 作者:家衡 2020-11-06 14:21 次阅读

作为AI芯片的典型,目前华为、苹果等厂商都开始在NPU上发力。除此以外,开发者也在努力推进着手机端AI应用的发展。

NPU(Neural Processing Unit,神经网络处理器),一直都是华为发布会上的热门词汇,这次的麒麟9000同样将NPU标记在芯片结构图的C位。而库克在介绍最先进的A14处理器时,也着重提到了NPU。

早在2013年,高通公司就提出了“Zeroth”处理器的概念,这款处理器可以模仿类似人脑的认知能力,并实现自我学习的功能。

在高通的设想中,Zeroth的终极目标就是形成标准化的新型处理架构,并且第一次提出了NPU的概念,这种芯片已经具备了AI芯片的雏形。

2017年,华为海思推出了麒麟970,这款芯片首次内置了独立NPU。

在此之后,几乎所有的手机厂商都将AI作为新的亮点,一颗SoC芯片如果没有足够的AI算力,似乎都不能被拿到台面上介绍。

如今距离提出NPU的概念已经过去了七年,AI芯片在手机端的发展似乎并不如人意。

如何理解NPU

传统CPU进行累加计算时,效率非常低,但当GPU做类似的计算,效率就会高很多。同样的道理,GPU主要被用来进行图像处理,并没有针对神经网络计算进行特殊优化,这时候使用专业针对神经网络计算的NPU,就可以大大提高计算效率并减少功耗。

假设我们面前有一条没有桥的河,我们应当如何过河?这时候大脑就会涌出各种想法并且比较各种方法的优劣。

NPU的工作就类比大脑,在手机中模拟所有可行的方案,并从中挑选一个最优解。有了NPU之后,手机的AI性能就能得到大幅的提升。

从麒麟970的单核NPU、到最新的麒麟9000的2+1三核NPU,NPU的升级也伴着华为的AI技术的发展,最能直观体会到的就摄像功能带来的进步。

比如取景时的智能场景识别功能,可以让系统快速识别拍摄的物体和场景,并自动做出优化调教。再比如被广大消费者惊叹的“月亮模式”,以及强大的智能防抖功能,再包括最新的物体识别。

这些功能都是通过NPU来弥补华为手机在CMOS尺寸以及ISP(图像信号处理)上与其他厂商的差距。

在麒麟970推出之后,AI功能逐渐拓展,从手持超级夜景到语音助手、节能优化、智慧识别、识图翻译......越来越多的应用场景都开始运用AI加速运算,这些都得益于NPU的支持。

硬件层面,NPU可以代替CPU进行处理,让SoC具备了更强的本地AI运算能力(类似于“硬解”)。相比较CPU的“软解”,“硬解”效率更高、速度更快、功耗也更低。

但即便NPU功能十分强大,如今NPU在手机日常的应用领域还处于初级阶段,它的重要性还远不如CPU、GPU和ISP,属于锦上添花的存在。

例如高通骁龙AI Engine引擎之中就没有独立的NPU单元,而联发科在Helio P60/P90引入的NeuroPilot AI技术最早也是通过多个单元协同计算(APU+CPU+GPU)。

AI芯片只是第一步

有了AI芯片的支持,或许能增强手机AI能力,但目前的AI芯片却不能很好地适配所有的软件。

比如,很多直播APP都有实时美颜功能,可以利用降噪、颜色空间转换实现磨皮、滤镜等基础功能,但使用不同的软件可能会造成耗电量过高的异常,这就是软件层面的不适配。

从整个市场上来看,目前AI芯片还处于算法主导到产品主导的过渡期,由于各家AI芯片的设计不同,AI方案架构方面都有不小区别,像寒武纪的“DIANNAO”、谷歌的TPU,再到华为的达芬奇架构,目前AI芯片的设计可谓百花齐放。除此以外,还有单一针对卷积神经网络的ASIC加速器,以及支持简单编程的通用型AI芯片。

这些种类繁多的AI芯片,推动了AI技术在手机端的普及,但不可避免会带来一些问题。

AI应用需要开发者的努力

虽然各家的AI芯片都开始集成独立的神经网络处理单元,但是在设计上有很大不同,这意味着在运行机器学习应用方面,几家AI芯片在性能和能耗上有很大差别。因此,第三方开发者是否针对几家的芯片设计进行优化,或只支持某一种设计,会对系统性能产生重大影响。

目前,大多数移动AI芯片在机器学习方面做了较为普适性的优化,而对一些特定的计算方式则没有进行太多优化。

就算开发者开发出同一款AI应用,其兼容性可能会存在很多问题。当AI应用的开发进入到实际的应用和业务层面,开发者面临着标准不同、API配适、软件优化等很多的难题。也就导致开发者必须针对不同厂商的设备进行逐个优化。加之安卓生态比较混乱,移动AI开发者很可能受到更多阻碍。

就拿之前提到获得AI技术加持的照相功能来讲,除了在画面上的提升,还是有很多人都会吐槽华为手机存在过分美颜、过度锐化、颜色失真等问题,但这些问题在iPhone上就很少被提及。

一直以来,苹果在照片成像上的AI技术都调教的恰到好处,不论是自带相机还是第三方相机,“拍照真实”也成为iPhone的卖点之一,很多专业摄影师已经选择将iPhone作为便携街拍设备。相比而言,“傻瓜式”的安卓手机更偏向摄影小白。

不过随着安卓手机厂商和应用开发者不断对系统以及APP进行优化,现在的安卓手机拍照也变得更加智能。

所以,AI芯片只是提供了手机AI应用的基石,真正要挖掘出移动端AI的魅力,还需要开发者针对AI芯片的能力开发出合适的应用。

结语

目前,以AI芯片为基础打造一个AI应用生态圈的愿望真的十分美好,但这个过程还有很长的路要走。硬件走在了前面,软件也要跟得上。

在未来,NPU或许也会像当年FPU之于CPU一样,成为移动Soc芯片的标准。或许在未来我们能在智能手机上体会到更棒的AI应用。

至少在现在,以NPU为首的AI芯片们,还有很长的路要走。

责任编辑:xj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 华为
    +关注

    关注

    215

    文章

    34223

    浏览量

    250831
  • 苹果
    +关注

    关注

    61

    文章

    24304

    浏览量

    195372
  • AI
    AI
    +关注

    关注

    87

    文章

    29611

    浏览量

    267905
  • NPU
    NPU
    +关注

    关注

    2

    文章

    255

    浏览量

    18499
收藏 人收藏

    评论

    相关推荐

    40+TOPS NPUAI PC处理器开卷算力

    的人工智能任务。同时,微软还提出,这款全新电脑搭配拥有全新神经处理单元NPU芯片,可实现每秒超过40万亿次即40+TOPS的运算。那么也就是说,若要符合微软给出的AI PC的定义,NPU
    的头像 发表于 07-14 01:11 4201次阅读
    40+TOPS <b class='flag-5'>NPU</b>,<b class='flag-5'>AI</b> PC处理器开卷算力

    天玑9400权威测试AI性能跑分第一,领跑行业

    联发科近日隆重推出其最新旗舰芯片——天玑9400,这款芯片是天玑家族的第二代全大核SoC,并且成为首款集成智能体AI的5G旗舰芯片。在继天玑
    的头像 发表于 10-14 14:57 313次阅读
    天玑9400权威测试<b class='flag-5'>AI</b>性能跑分第一,领跑行业

    什么是NPU?什么场景需要配置NPU

    处理AI任务上的效率更高,在现今ARM主板配置中也变得越来越重要。本文将带大家了解 NPU 的作用、必要性,以及国产芯片厂商是如何对它进行布局的。
    的头像 发表于 10-11 10:13 636次阅读
    什么是<b class='flag-5'>NPU</b>?什么场景需要配置<b class='flag-5'>NPU</b>?

    NXP推出集成NPU的MCU,支持AI边缘设备!MCU实现AI功能的多种方式

    旨在显著节省功耗,可在边缘端提供高达172倍的AI加速。   MCU 集成NPU 支持AI 功能   恩智浦推出的这款i.MX RT700内部集成了恩智浦自研的eIQ Neutron NPU
    的头像 发表于 09-29 01:11 3384次阅读

    刷新AI PC NPU算力,AMD锐龙AI 9 HX 375领衔55 TOPS

    电子发烧友网报道(文/黄晶晶)最近AMD官网上线了锐龙AI 300系列中的最新成员锐龙AI 9 HX 375处理器。原本Ryzen AI 9 HX 370的NPU达到了50 TOPS,
    的头像 发表于 08-07 00:28 3123次阅读
    刷新<b class='flag-5'>AI</b> PC <b class='flag-5'>NPU</b>算力,AMD锐龙<b class='flag-5'>AI</b> 9 HX 375领衔55 TOPS

    AI PC引发的NPU大战?英特尔:仅30%开发者选择NPU

    随着COMPUTEX 2024的日益临近,关于人工智能(AI)个人计算机(PC)的话题开始变得愈发热门和受关注。据微软公司近期发布的相关技术规范要求,所有运行Windows操作系统的AI PC必须配备本地运行Copilot的功能机制,并安装容量至少为40 TOPS的神经网
    的头像 发表于 06-03 17:24 813次阅读

    AI芯片哪里买?

    AI芯片
    芯广场
    发布于 :2024年05月31日 16:58:19

    NPU是什么?为何它是开启终端侧生成式AI的关键?

    生成式AI变革已经到来。随着生成式AI用例需求在有着多样化要求和计算需求的垂直领域不断增加,我们显然需要专为AI定制设计的全新计算架构。这首先需要一个面向生成式AI全新设计的神经网络处
    的头像 发表于 03-07 11:25 2001次阅读
    <b class='flag-5'>NPU</b>是什么?为何它是开启终端侧生成式<b class='flag-5'>AI</b>的关键?

    采用芯原NPU IP的人工智能(AI)类芯片已在全球出货超过1亿颗

    2024年2月29日,中国上海——芯原股份(芯原,股票代码:688521.SH)今日宣布集成了芯原神经网络处理器(NPU)IP的人工智能(AI)类芯片已在全球范围内出货超过1亿颗
    的头像 发表于 03-06 17:10 588次阅读

    高通NPU和异构计算提升生成式AI性能 

    异构计算的重要性不可忽视。根据生成式AI的独特需求和计算负担,需要配备不同的处理器,如专注于AI工作负载的定制设计的NPU、CPU和GPU。
    的头像 发表于 03-06 14:15 687次阅读

    采用芯原NPU IP的AI芯片已在全球出货超过1亿颗

    芯原股份发布重要消息,其集成了芯原神经网络处理器(NPU)IP的人工智能(AI)类芯片,已在全球范围内出货超过1亿颗。这一里程碑式的成就标志着芯原在AI领域的持续领先和创新。
    的头像 发表于 03-06 10:54 766次阅读

    采用芯原NPU IP的AI芯片已在全球出货超过1亿颗

    芯原股份(芯原,股票代码:688521.SH)今日宣布集成了芯原神经网络处理器(NPU)IP的人工智能(AI)类芯片已在全球范围内出货超过1亿颗,主要应用于物联网、可穿戴设备、智慧电视、智慧家居、安
    的头像 发表于 02-29 10:26 377次阅读

    OpenAI表示Sora还有很长要走

    近日,OpenAI发布的Sora视频生成器在技术圈内引起了广泛关注。尽管其初步展示的效果令人印象深刻,但该工具目前仍处在研究阶段,距离实际应用还有相当的距离。
    的头像 发表于 02-27 17:38 663次阅读

    微软画图即将支持NPU,Windows内置应用AI功能持续优化

    神经网络处理单元(NPU),作为一款Win11笔记本上的专属硬件组件,主要承担AI及机器学习任务处置。相较于云服务或通CPU,NPU能有效提升本地设备的AI任务处理能力。
    的头像 发表于 02-26 13:51 618次阅读

    简单三步在Windows上调用低功耗NPU部署AI模型

    相信很多小伙伴都已经知道,在最新一代的英特尔 酷睿 Ultra 移动端处理中已经集成了被称为 NPU 的神经网络加速处理器,提供低功耗的 AI 算力,特别适合于 PC 端需要长时间稳定运行的
    的头像 发表于 02-22 17:17 3211次阅读
    简单三步在Windows上调用低功耗<b class='flag-5'>NPU</b>部署<b class='flag-5'>AI</b>模型