0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

地方政府是如何采用机器学习与AI等技术的?

如意 来源:科技行者 作者:科技行者 2020-11-11 15:23 次阅读

当下,新闻报道总在介绍AI技术如何给不同行业带来深远影响。从制造业到金融业、从零售业到制药业、从医疗业到保险业等等,毫无疑问,AI技术的入驻正给众多领域带来翻天覆地的变化。同样,多年以来,AI技术也成为全球各国政府的关注焦点,并敦促其纷纷拿出自己的AI发展战略、借此改变远程办公时代下的运作方式。但在此之前,鲜有媒体关注各州/省、市以及地方政府在实施AI技术的话题。既然AI当中蕴藏着如此巨大的能量,地方政府怎么可能在这场变革中甘当路人?

政府可以安于技术停滞现状的时代早已一去不返。如今新的世界已然来临,公民希望立即获取信息与服务,数据不仅要以快速、可靠、透明且安全的方式交付,同时还要充分保护当事人隐私。地方政府需要采用相应技术以应对这一系列挑战,包括在疫情爆发背景之下提供经济援助、使用先进的AI技术(例如人脸识别),同时在治安、网络安全等领域建立起公平与公正的数据访问的新秩序。民众要求快速可靠地表达意愿,联络地方政府,甚至希望能够尽快体验到自动驾驶汽车带来的种种便利。这一切,都给地方政府提出严峻挑战,随之而来的压力甚至不逊于向来以创新为核心的科技企业。

作为弗吉尼亚州温彻斯特市的市政管理者,曾担任佛罗里达州盖恩斯维尔市市长助理的Dan Hoffman深切关注技术时代下政府设备中的实际挑战。在最近的AI数据会议上,Dan Hoffman分享了自己的观点,包括州/省及地方政府应如何采用AI技术、AI将给地方政府带来哪些挑战与机遇,以及管理者所应具备的前瞻性视角。

地方政府在数据层面面对的独特挑战有哪些?

Dan Hoffman: 多年以来,地方政府意识到数据在总量、各类及增长速度方面均已创下历史新高。虽然这一切早已为人们所熟知,但政府在聘用及保留人才方面仍然表现得相当落后。如今,政府必须想办法以复杂方法运用数据的力量。不少城市已经发展到一定程度,能够以适合自己的方式建立可视化体系、仪表板以及效能管理工具。这一切都让人们对于所在城市的运作方式有了更深入的了解,最终也有助于做出更好的决策。当前,供应商提供大量AI与机器学习技术,可通过强大的实时决策能力促进政府服务的快速完善。因此,我们正身处一个公共部门需要与私营企业竞争分析及信息技术人才的时代。如果不及时做出转变,政府部门在技术与数据管理能力方面将进一步落后、或者陷入对外部供应商的严重依赖而无法自拔。

地方政府是如何采用机器学习与AI等技术的?

Dan Hoffman: 在二十多年的职业生涯中,我曾先后供职于联邦政府、大城市、地方市县。如今,我在弗吉尼亚州温彻斯特这座充满活力的小城市担任行政执行官。根据我的个人经历,特别是与专注于政府技术及数据管理的国家/国际组织间的积极合作,我意识到其中存在着各种各样的技术应用途径。这波新的技术浪潮为我们的政务基本面带来了前所未有的颠覆与挑战。我认为,那些习惯于将一切交给外部供应商或传统解决方案的管辖区,将很难适应新浪潮带来的重大冲击。各地司法管辖区必须建立政策小组与委员会,确保民选机构真正参与到AI与机器学习中来。在新时代下,市政管理者必须有能力向自己的选民解释这些新工具的优势。城市还应采取下一步行动,与居民交互、探讨这些工具能做到什么/做不到什么。例如,如果新的智能化交通系统能够节约时间、挽救生命,市政管理者必须拥有力排众议、勇于实施的魄力。

在您看来,自动化、高级数据分析与AI是否在地方政府中扮演起越来越重要的角色?

Dan Hoffman: 实事求是地讲,并没有。广义上的自动化确实在不断普及,毕竟过去十年当中政府层面的无纸化与数字化举措都是自动化的直接体现。但在现实世界中使用网络物理系统实施自动化的比例并不高。虽然零星存在,但规模还是太过有限。高级数据分析的情况也差不多,具体要看定义有多严格。对我来说,高级数据分析代表的不能仅仅是整理出美观但只包含基础智能内容的静态仪表板。我看到美国国家科学基金会(NSF)等组织正通过其“智能与互联社区”项目着手设计真正的高级分析示例。社区应该关注这些项目与MetroLab网络,随时跟进最新研究成果。至于AI,虽然这项技术已经在某些偏远地区发挥作用,但我担心它会受到公开可用的误导性信息的左右。我们需要更周密、更明智的决策,才能保证AI解决方案的快速增长。

您能不能举几个现实的例子,说明这些技术产生了哪些积极影响?

Dan Hoffman: 我们已经看到全国各地的智能交通系统有所发展。我认为这是扩大技术使用范围并实现社区利益的理想场景。在了解技术的前沿发展方面,我主要会关注开发这些解决方案的人员。我关注奥斯汀市交通运输部的Jen Duthie团队的工作。Alex Pazuchanics目前也在西雅图推进一系列了解的尝试。就个人而言,我目前正在与NSF资助的佛罗里达大学Sanjay Ranka博士与Lily Elefteriadou博士合作,旨在融合各类数据流以帮助识别出高风险交叉路口。再有一年,我们的合作项目就创立三年了,目前来看这个项目颇具发展潜力。

地方政府在采用AI技术方面存在哪些独特挑战?

Dan Hoffman: 我之前已经提到,公众的认知可以说是AI采用的最大障碍,而且目前市面上关于AI的错误信息实在太多。私营部门在AI技术的使用方面也不够谨慎。未来,更加开放透明的地方政府应该使用AI改善服务能力,更高效地使用纳税人缴纳的税款,甚至在某些情况下借此挽救生命。遗憾的是,很多人与AI的初次接触来自非常复杂的营销活动,这无疑毁掉了AI通过第一印象在民众心中树立良好口碑的宝贵机会。

您认为AI技术在地方治理中的哪些层面上最具实际影响?

Dan Hoffman: 从短期来看,AI有望改善交通流量、出行方式,并带来更好的环境控制效果(包括雨水排放系统与固体废物管理),在增强城市可持续性之外提高居民生活质量。但随着时间的推移,我认为AI在公共安全领域的意义更为明显。但出于民众的普遍顾虑,AI可能需要更长的时间才能发展出应有的信任。即使对于早期采用者而言,这类系统仍然成本高昂、且对政府雇员提出了更高的技能标准与培训要求,因此难以快速实施。但在时机成熟之后,AI工具将在预防火灾以及应对医疗紧急状况等领域发挥巨大的作用。我们已经看到美国国家失踪与受虐儿童中心等组织在使用AI工具打击违法活动方面取得了长足进步。因此,我认为国家级机构在公共安全领域应用AI技术将只是时间问题,地方政府也将逐步探索出适合自己的采用道路。

地方政府在数据隐私、透明性与安全性方面存在哪些挑战?

Dan Hoffman: 地方政府与数据之间的关系一直非常复杂,而且不同于私营部门方面的情况。与大多数私营部门不同,我们的使命在于保护民众、促进经济增长、教化青年、保证市区货物与人员的顺畅流动等。这是一组相当多样化的职能。那么,让我们回归这个问题:隐私性、安全性与透明性?换言之,地方政府需要在广泛的职能区域之内平衡这三大因素,遵守公共信息法要求并保护与居民个人相关的高敏感度数据。这无疑是一项艰巨的任务。特别是考虑到本有捉襟见肘的资源,隐私性与透明性兼顾绝非易事。

地方政府可以采取哪些措施培养具备AI技能的劳动力,又该如何围绕数据与AI提升现有劳动力的技能水平?

Dan Hoffman: 终于来了个比较简单的问题。但答案却并不简单……因为最好的方法就是“花钱”。不要削减培训预算,保证政府的技术岗位提供有竞争力的薪酬,并将认证资质与绩效薪酬匹配起来。当前政府部门在吸引技术人才方面,所能强调的仍然只有责任感或者说使命感。毕竟自己管理的系统如果挽救了生命或者给社群提供支持,确实能给雇员带来强烈的成就感。

未来几年之内,您对哪些AI技术最为期待?

Dan Hoffman: 之前我已经提到了生命保护技术与交通系统等。考虑到COVID-19疫情带来的现实挑战,我认为使用AI技术监控、阻断并控制新一轮爆发将非常重要。除此之外,我认为各个司法管辖区都有必要使用AI技术更科学地处理固体废物。每年出现的众多此类新工具与系统不仅能够帮助城市节约资金,同时也将给环境带来积极影响。以瑞典为代表的多个国家已经在这一领域引领潮流。他们只需要将不到1%的废物运往垃圾填埋场。不同于单纯给城市带来财政压力的传统填埋设施,瑞典等地正使用各种技术将废弃物转化为公共汽车与出租车燃料、通过区域供暖为帮助民众度过寒冬等。我们将密切关注这些进展,思考如何将AI技术应用于更多现实场景。

优秀的市政执行官应该向他人学习,并与同行分享自己的心得与体会。正如温彻斯特一直在从世界其他国家的成功经验中汲取养分一样,我们也将做出自己的探索,并与他人分享我们的成果。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据
    +关注

    关注

    8

    文章

    7017

    浏览量

    89012
  • AI
    AI
    +关注

    关注

    87

    文章

    30851

    浏览量

    269026
  • 机器学习
    +关注

    关注

    66

    文章

    8416

    浏览量

    132619
收藏 人收藏

    评论

    相关推荐

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生
    的头像 发表于 12-25 11:54 80次阅读

    什么是机器学习?通过机器学习方法能解决哪些问题?

    来源:Master编程树“机器学习”最初的研究动机是让计算机系统具有人的学习能力以便实现人工智能。因为没有学习能力的系统很难被认为是具有智能的。目前被广泛
    的头像 发表于 11-16 01:07 400次阅读
    什么是<b class='flag-5'>机器</b><b class='flag-5'>学习</b>?通过<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法能解决哪些问题?

    【书籍评测活动NO.51】具身智能机器人系统 | 了解AI的下一个浪潮!

    的。 这种理论强调,智能行为源于智能体的物理存在和行为能力,智能体必须具备感知环境并在其中执行任务的能力。 具身智能的实现涵盖了机器学习、人工智能、机器人学、计算机视觉、自然语言处理和强化学习
    发表于 11-11 10:20

    AI干货补给站 | 深度学习机器视觉的融合探索

    在智能制造的浪潮中,阿丘科技作为业界领先的工业AI视觉平台及解决方案提供商,始终致力于推动AI+机器视觉技术的革新与应用。为此,我们特别开设了「AI
    的头像 发表于 10-29 08:04 227次阅读
    <b class='flag-5'>AI</b>干货补给站 | 深度<b class='flag-5'>学习</b>与<b class='flag-5'>机器</b>视觉的融合探索

    人工智能、机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2485次阅读
    人工智能、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习AI大模型的基础 技术支撑 :
    的头像 发表于 10-23 15:25 724次阅读

    AI大模型与传统机器学习的区别

    AI大模型与传统机器学习在多个方面存在显著的区别。以下是对这些区别的介绍: 一、模型规模与复杂度 AI大模型 :通常包含数十亿甚至数万亿的参数,模型大小可以达到数百GB甚至更大。这些模
    的头像 发表于 10-23 15:01 616次阅读

    AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络。这些技术构成了
    发表于 10-14 09:16

    RISC-V如何支持不同的AI机器学习框架和库?

    RISC-V如何支持不同的AI机器学习框架和库?还请坛友们多多指教一下。
    发表于 10-10 22:24

    AI引擎机器学习阵列指南

    AMD Versal AI Core 系列和 Versal AI Edge 系列旨在凭借 AI 引擎机器学习 ( ML ) 架构来提供突破性
    的头像 发表于 09-18 09:16 396次阅读
    <b class='flag-5'>AI</b>引擎<b class='flag-5'>机器</b><b class='flag-5'>学习</b>阵列指南

    什么是AI技术,它能做什么

    AI技术,即人工智能技术,是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似方式做出反应、学习、推理和决策的智能机器
    的头像 发表于 07-10 10:10 3202次阅读

    Al大模型机器

    )大模型AI机器采用中英文双语应用,目前的知识图谱包括了金航标和萨科微所有的产品内容、应用场景、产品的家属参数,热卖的型号S8050、TL431、SS8550、FR107、LM32
    发表于 07-05 08:52

    机器学习怎么进入人工智能

    ,人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别。 在编程中进行人工智能的关键是使用机器学习算法,这是一类基于样本数据和模型训练来进行预测和判断的
    的头像 发表于 04-04 08:41 313次阅读

    NVIDIA Isaac机器人平台升级,加速AI机器技术革新

    NVIDIA Isaac机器人平台近期实现重大升级,通过引入最新的生成式AI技术和先进的仿真技术,显著加速了AI
    的头像 发表于 03-27 10:36 678次阅读

    NanoEdge AI技术原理、应用场景及优势

    NanoEdge AI 是一种基于边缘计算的人工智能技术,旨在将人工智能算法应用于物联网(IoT)设备和传感器。这种技术的核心思想是将数据处理和分析从云端转移到设备本身,从而减少数据传输延迟、降低
    发表于 03-12 08:09