0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

晶振相邻层挖空是如何控制寄生电容Cp的呢?

汽车电子工程知识体系 来源:汽车电子硬件设计 作者:汽车电子硬件设计 2020-11-17 14:54 次阅读

晶振有两个比较重要的参数,频偏和温偏,单位都是PPM,通俗说,晶振的标称频率不是一直稳定的,某些环境下晶振频率会有误差,误差越大,电路稳定性越差,甚至电路无法正常工作。

所以在PCB设计时,晶振的layout显得尤其的重要,有如下几点需要注意。

两个匹配电容尽量靠近晶振摆放。

晶振由石英晶体构成,容易受外力撞击或跌落的影响,所以在布局时,最好不要放在PCB边缘,尽量靠近芯片摆放。

晶振的走线需要用GND保护好,并且远离敏感信号RF、CLK信号以及高速信号。

在一些晶振的PCB设计中,相邻层挖空(净空)或者同一层和相邻层均净空处理,第三层需要有完整的地平面,这么做的原因是维持负载电容的恒定。

晶振负载电容的计算公式是:

CL=C1*C2/(C1+C2)+Cic+Cp

Cic为集成电路内部电容,Cp为PCB板的寄生电容,寄生电容过大,将会导致负载电容偏大,从而引起晶振频偏,这个时候减小匹配电容C1和C2可能会有所改善,但这也是治标不治本的措施。

晶振相邻层挖空是如何控制寄生电容Cp的呢?

电容的物理公式是:C=εS/4πKd,即晶振焊盘与邻近地平面之间的面积S和距离d均会影响寄生电容大小,因为面积S是不变的,所以影响寄生电容的因素只剩下距离d,通过挖空晶振同一层的地和相邻层的地,可以增大晶振焊盘与地平面之间的距离,来达到减小寄生电容的效果。

电容容值和物理量之间的关系

简单画了一个图示,如下一个4层板,晶振放在Top层,将Top层和相邻层净空之后,晶振相对于地平面(L3),相比较没有净空之前,这个距离d是增大的,即寄生电容会减小。

晶振的L1和L2层均净空处理

晶振的摆放需要远离热源,因为高温也会影响晶振频偏。

我们知道晶振附近相邻地挖空处理,一方面是为了维持负载电容恒定,另一方面很大原因是隔绝热传导,避免周围的PMIC或者其他发热体的热透过铜皮传导到晶振,导致频偏,故意净空不铺铜,以隔绝热的传递。

为什么温度会影响晶振频率呢?

当晶振加热或者降低到某个温度后再降到常温,与最初在常温下测试通常情况下会有一定的变化,这是因为晶体的热滞后现象,带温度补偿的TCXO相对来说精度会好不少,可以有效解决晶体温漂,但一般TCXO都是M以上级别较多,KHz的很少,受限于生产工艺。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • pcb
    pcb
    +关注

    关注

    4323

    文章

    23130

    浏览量

    398838
  • 晶振
    +关注

    关注

    34

    文章

    2887

    浏览量

    68151
  • 贴片晶振
    +关注

    关注

    0

    文章

    380

    浏览量

    6362

原文标题:10年老司机倾囊相授,贴片晶振的PCB layout需要注意哪些?

文章出处:【微信号:QCDZYJ,微信公众号:汽车电子工程知识体系】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    CAN通信节点多时,如何减少寄生电容和保障节点数量?

    导读在汽车电子与工业控制等领域,CAN通信至关重要。本文围绕CAN通信,阐述节点增多时如何减少寄生电容的策略,同时从发送、接收节点等方面,讲解保障节点数量及通信可靠性的方法。如何减少寄生电容?增加
    的头像 发表于 01-03 11:41 747次阅读
    CAN通信节点多时,如何减少<b class='flag-5'>寄生电容</b>和保障节点数量?

    电容和电阻与如何搭配运作

    ,就像是一个需要伙伴才能跳舞的人,而这个伙伴就是负载电容有两条线,这两条线会连接到IC块(一个集成电路块)里面,那里有一些有效的
    的头像 发表于 11-27 14:55 928次阅读
    <b class='flag-5'>电容</b>和电阻与<b class='flag-5'>晶</b><b class='flag-5'>振</b>如何搭配运作

    半大马士革工艺:利用空气隙减少寄生电容

    本文介绍了半大马士革工艺:利用空气隙减少寄生电容。 随着半导体技术的不断发展,芯片制程已经进入了3纳米节点及更先进阶段。在这个过程中,中道(MEOL)金属互联面临着诸多新的挑战,如寄生电容
    的头像 发表于 11-19 17:09 634次阅读
    半大马士革工艺:利用空气隙减少<b class='flag-5'>寄生电容</b>

    PF是什么意思

    30PF所指得是外挂电容30PF,一般情况下,无源的负载电容最大选项为20PF。PF是
    的头像 发表于 10-22 16:51 1092次阅读
    <b class='flag-5'>晶</b><b class='flag-5'>振</b>PF是什么意思<b class='flag-5'>呢</b>?

    深入解析时钟信号干扰源:寄生电容、杂散电容与分布电容

    在现代电子电路设计中,时钟信号的高频特性使得其容易受到各种干扰。其中,寄生电容、杂散电容和分布电容是影响
    发表于 09-26 14:49

    仿真的时候在哪些地方添加寄生电容

    请问各位高手,仿真的时候在哪些地方添加寄生电容,比如下面的图, 另外一般万用板焊出来的杂散电容有多大?在高速运放仿真时应该加在哪些地方
    发表于 09-19 07:59

    普通探头和差分探头寄生电容对测试波形的影响

    在电子测试和测量领域,探头是连接被测设备(DUT)与测量仪器(如示波器)之间的关键组件。探头的性能直接影响到测试结果的准确性和可靠性。其中,寄生电容是探头设计中一个不容忽视的因素,它对测试波形有着
    的头像 发表于 09-06 11:04 408次阅读

    igbt功率管寄生电容怎么测量大小

    IGBT(绝缘栅双极晶体管)是一种广泛应用于电力电子领域的功率器件。IGBT的寄生电容是指在IGBT内部由于结构原因产生的电容,这些电容会影响IGBT的开关速度和性能。 一、IGBT寄生电容
    的头像 发表于 08-07 17:49 935次阅读

    有源需要加负载电容吗?

    我们要明确负载电容的概念。负载电容是指的两条引线连接IC块内部及外部所有有效电容之和,它在电路中起到了关键的作用。然而,在讨论有源
    的头像 发表于 05-18 08:34 1044次阅读
    有源<b class='flag-5'>晶</b><b class='flag-5'>振</b>需要加负载<b class='flag-5'>电容</b>吗?

    的误差是怎么回事?如何有效控制误差的出现?

    不是所有的东西都完美无瑕疵,就像电子产品都会出现一定的误差一个道理。今天小编将要说的就是误差的相关问题,的误差是怎么回事
    的头像 发表于 05-09 14:33 1040次阅读

    详解MOS管的寄生电感和寄生电容

    寄生电容寄生电感是指在电路中存在的非意图的电容和电感元件。 它们通常是由于电路布局、线路长度、器件之间的物理距离等因素引起的。
    的头像 发表于 02-21 09:45 2636次阅读
    详解MOS管的<b class='flag-5'>寄生</b>电感和<b class='flag-5'>寄生电容</b>

    有源和无源的区别是什么

    有源和无源两种类型,无源
    的头像 发表于 02-16 15:46 4147次阅读
    有源<b class='flag-5'>晶</b><b class='flag-5'>振</b>和无源<b class='flag-5'>晶</b><b class='flag-5'>振</b>的区别是什么

    电容C0过大,会怎么样?

    电容C0过大,会怎么样? 电容(也称为震荡电容
    的头像 发表于 01-25 14:34 1017次阅读

    启动电容的作用 的工作原理 启动电容输出频率的影响

    启动电容的作用 的工作原理 启动电容输出频率的影响  启动
    的头像 发表于 01-23 16:42 897次阅读

    PCB寄生电容的影响 PCB寄生电容计算 PCB寄生电容怎么消除

    寄生电容有一个通用的定义:寄生电容是存在于由绝缘体隔开的两个导电结构之间的虚拟电容(通常不需要的),是PCB布局中的一种效应,其中传播的信号表现得好像就是电容,但其实并不是真正的
    的头像 发表于 01-18 15:36 3198次阅读
    PCB<b class='flag-5'>寄生电容</b>的影响 PCB<b class='flag-5'>寄生电容</b>计算 PCB<b class='flag-5'>寄生电容</b>怎么消除