半导体材料有着其独特的电性能和物理性能,使得半导体器件和电路具有对应的功能。半导体国产化的进程进度条正在持续加载,处于相关行业的我也在不断地了解和积累相关知识,接下来的话题主要针对半导体芯片那些事儿,希望大家能够喜欢~
从材料到器件,再从器件到材料,包含了数不清的环节,也产生了不同的职业岗位,而不能了解全面可能是步入社会,成为“打工人”之后的无奈,希望接下来的话题内容能够让大家了解到半导体的细枝末节。今天我们来聊聊半导体材料的几个小知识。
原子结构
任何事物都是由96种稳定元素和12种不稳定元素组成的,每个元素都有着不同的原子结构,不同的结构也决定了元素不同的特性。再将原子细分下去,又包含了称为亚原子粒子的三个部分:质子、中子和电子,它们有着各自的特性,不同的组合和结构决定了原子不同的特性。
最早把原子的基本结构用于解释不同元素独特的物理、化学和电性能的是丹麦的物理学家Niels Bohr(尼尔斯·玻尔):
玻尔原子模型中,带正电的质子和不带电的中子集中在原子核中,带负电的电子围绕原子核外围的轨道运动,形成较稳定的原子结构,好比行星绕太阳旋转一样。
而每个轨道所能容纳的电子数量是有限的,在有些原子中,并不是每个位置都会被电子填满,这样结构中就留下了一个空位置--空穴,当一个轨道中电子轨道被填满后,其余的电子就必须填充到下一层的轨道上。
很多材料的一个重要特性是导电性,也就是支持电流的特性,而电流的本质就是电子的流动。如果元素或者材料中的质子对外层电子的束缚相对较弱,电传导就可以进行,在这样的材料中这些电子可以很容易的建立电流,这种情况存在于大多数的金属中。
导电性我们一般以导电率表示,导电率越高,材料的导电性能越好,同时导电率的倒数我们称为电阻率,电阻率越低相应的导电性能越好。与导电性相对的是绝缘性,有些材料中表现出原子核对轨道电子的强大束缚,即对电子的移动有着较强的阻碍,比如二氧化硅就被作为半导体中的绝缘材料。
将一层绝缘体夹在两个导体之间的三明治结构,就是我们知道的电容,半导体结构中,存在着很多“三明治”结构,及我们知道的很多寄生电容。电容在存储器件中用于信息的存储,消除在导体和硅表面垒集的不利电荷,并且形成场效应晶体管中的工作器件。半导体金属传导系统需要很高的导电率,因而也就需要低电阻和低电容的材料,这些材料就是低绝缘常数的绝缘体,用于传导层间隔离的绝缘层需要高电容或者高绝缘常数的绝缘体。
本征/掺杂半导体
半导体材料,顾名思义即本身就有一些天然导电能力的材料,主要的两种半导体材料--硅(Si)和锗(Ge),当然还有好几十种化合物半导体材料,化合物是两种或多元素化合的材料。
“本征”这个术语指的是材料处于纯净状态而不是掺杂了杂质,本征半导体即不含任何杂质且无晶格缺陷的纯净半导体。但是我们使用的半导体器件中并不是本征半导体,而是通过一种掺杂工艺产生的掺杂半导体,掺杂工艺可以将特定的元素引入到本征半导体中,这些元素可以提高本征半导体的导电性,其表现出两种特性:
①通过掺杂精确控制电阻率;
②电子和空穴导电。
掺杂能够使半导体材料的电阻率达到一个有用的范围,这种半导体材料分为多电子型和多空穴型,即我们所说的N型半导体和P型半导体。下图是掺杂程度和硅电阻率之间的关系:
纵坐标是载流子浓度,我们将电子和空穴称为载流子。N型和P型的曲线不同是由于电子和空穴移动所需要的能量不同,我们可以看出,要达到指定的电阻率,N型所需要的掺杂浓度要比P型的小。
只需0.000001%到0.1%的掺杂便可以使半导体达到有用的电阻范围,也就是可以达到精确控制电阻率区域。
电子和空穴
金属只能通过电子的移动来导电,所以其永远是N型的。而半导体材料通过掺杂特定的元素可以成为N型或者P型,即可以通过电子或者空穴来导电。下面我们就来简单了解下N型和P型半导体:
①N型半导体
我们以砷(As)作为掺杂元素掺入到硅(Si)中,假定混合后每个砷原子被硅原子包围,砷原子外层有5个电子,其中四个与硅中的电子配对,留下来一个作为传导电子。当然掺杂元素也可以是磷(P)和锑(Sb)。
②P型半导体
P型半导体,是通过元素周期表中的Ⅲ族的硼(B)来掺杂的,硼的外层只有3个电子,在被硅原子包围时,三个电子与硅的电子配对,而多出一个无电子的位置,也就是空穴。
在掺杂半导体中电子和空穴不停地形成,电子会被吸入为填充的空穴,从而留下一个未填充的位置--新的空穴。
原文标题:半导体芯片那些事儿
文章出处:【微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。
责任编辑:haq
-
芯片
+关注
关注
452文章
50150浏览量
420518 -
电路
+关注
关注
172文章
5824浏览量
171724 -
半导体
+关注
关注
334文章
26802浏览量
213899
原文标题:半导体芯片那些事儿
文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
评论