0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

未来的3D NAND将如何发展?

璟琰乀 来源:雷锋网 作者:雷锋网 2020-11-20 16:07 次阅读

NAND 非易失性闪存存储器作为存储行业的突破性革新已有多年发展历史,随着 2D NAND 容量达到极限,以及晶体管越来越小,NAND 的编程时间变长,擦写次数变少,能够将内存颗粒堆叠起来的 3D NAND 应运而生,可以支持在更小的空间内容纳更高的存储容量,在需要存储海量数据的时代有着重大价值。

依托于先进工艺的 3D NAND,氧化层越来越薄,面临可靠性和稳定性的难题,未来的 3D NAND 将如何发展?如何正确判断一款 3D NAND 的总体效率?

在 2020 年的闪存峰会上,TechInsights 高级技术研究员 Joengdong Choe 发表了相关演讲,详细介绍了 3D NAND 和其他新兴存储器的未来。TechInsights 是一家对包括闪存在内的半导体产品分析公司

3D NAND 路线图:三星最早入局,长江存储跨级追赶

Choe 介绍了 2014-2023 年的世界领先存储公司的闪存路线图,包括三星、铠侠(原东芝存储)、英特尔、美光、SK 海力士和长江存储等公司的 3D NAND 技术发展路线。

Choe 给出的路线图显示,三星电子最早在 3D NAND 开拓疆土,2013 年 8 月初就宣布量产世界首款 3D NAND,并于 2015 年推出 32 层的 3D NAND,需要注意的是,三星将该技术称之为 V-NAND 而不是 3D NAND。

之后,三星陆续推出 48 层、64 层、92 层的 V-NAND,今年又推出了 128 层的产品。

SK 海力士稍晚于三星,于 2014 年推出 3D NAND 产品,并在 2015 年推出了 36 层的 3D NAND,后续按照 48 层、72 层 / 76 层、96 层的顺序发展,同样在今年推出 128 层的 3D NAND 闪存。

美光和英特尔这一领域是合作的关系,两者在 2006 年合资成立了 Intel-Micron Flash Technologies(IMFT)公司,并联合开发 NAND Flash 和 3D Xpoint。不过,两者在合作十多年之后渐行渐远,IMFT 于 2019 年 1 月 15 日被美光以 15 亿美元收购,之后英特尔也建立起了自己的 NAND Flash 和 3D Xpoint 存储器研发团队。

另外,在路线图中,长江存储于 2018 年末推出了 32 层的 3D NAND,2020 年推出了 64 层的 3D NAND。

从路线图中可以发现,从 90 多层跨越到 100 多层时,时间周期会更长。

相较于其他公司,国内公司 3D NAND 起步较晚,直到 2017 年底,才有长江存储推出国产首个真正意义上的 32 层 3D NAND 闪存。不过长江存储发展速度较快,基于自己的 Xtacking 架构直接从 64 层跨越到 128 层,今年 4 月宣布推出 128 层堆栈的 3D NAND 闪存,从闪存层数上看,已经进入第一梯队。

近期,长江存储 CEO 杨士宁也在 2020 北京微电子国际研讨会暨 IC World 学术会议上公开表示,长江存储用 3 年的时间走过国际厂商 6 年的路,目前的技术处于全球一流水准,下一步是解决产能的问题。

值得一提的是,在中国闪存市场日前公布的 Q3 季度全球闪存最新报告中,三星、铠侠、西部数据、SK 海力士、美光、英特尔六大闪存原厂占据了全球 98.4% 的市场份额,在剩下的 1.6% 的市场中,长江存储 Q3 季度的收入预计超过 1%,位列全球第七。

层数并未唯一的判断标准

尽管在各大厂商的闪存技术比拼中,闪存层数的数量是最直接的评判标准之一。

不过,Choe 指出,大众倾向于将注意力集中在闪存层数上可能是一种误导,因为字线(带有存储单元的活动层)的实际数量会有很大的不同,例如可以将其他层作为伪字线,以帮助缓解由较高层数引起的问题。

Choe 表示,判断 3D NAND 工作效率的一种标准是用分层字线的总数除以总层数,依据这一标准,三星的拥有最优秀的设计,不过三星也没有使用多个层或堆栈,不像其他厂商当前的闪存那样使用 “串堆栈”。

一种提高 3D NAND 总体效率的方法是将 CMOS 或控制电路(通常称为旁路电路)放置在闪存层下面。这一方法有许多名称,例如 CuA(CMOS-under-Array)、PUC (Periphery-Under-Cell), 或者 COP (Cell-On-Periphery)。

长江存储的设计有些特别,因为它有一些电路在闪存的顶部,而 CMOS 在连接到闪存之前,是在更大的工艺节点中制造的。Choe 认为这种技术有潜力,但目前存在产量问题。

另外,各个公司使用工艺也不尽相同,比较典型的就是电荷撷取闪存技术(Charge trap flash,简称 CTF)和传统浮栅存储器技术(Floating gate,简称 FG)。

CTF 使用氮化硅来存储电子,而不是传统 FG 中典型的掺杂多晶硅。具体而言,FG 将电子存储在栅极中,瑕疵会导致栅极和沟道之间形成短路,消耗栅极中的电荷,即每写入一次数据,栅极电荷就会被消耗一次,当栅极电荷被消耗完时,该闪存就无法再存储数据。而 CTF 的电荷是存储在绝缘层之上,绝缘体环绕沟道,控制栅极环绕绝缘体层,理论而言写入数据时,电荷未被消耗,可靠性更强。

Choe 指出在当前的存储芯片公司中,英特尔和美光一直使用的是传统的浮栅级技术,而其他制造商则依靠电荷撷取闪存设计。美光直到最近发布 176 层才更换新的技术,英特尔的 QLC 在使用浮栅技术的情况下,可以保持更好的磨损性能,但这也会影响其闪存的耐用性、可靠性、可扩展性以及其他性能优势。

下一个十年将指向 500 层

Choe 在演讲中提到,铠侠未来将用到的分离栅结构或分离单元结构技术也很有趣,它可以使存储器的密度直接增加一倍,并且由于分离单元结构的半圆形形状而拥有特别坚固的浮栅结构,具有更强的耐用性。

Choe 预计,随着平台或堆栈数量的增加(目前最多为两个),闪存层数将继续增加,每个闪存芯片的存储量也会相应增加。Choe 认为,这与其他技术,例如,硅通孔(TSV),叠层封装(PoP / PoPoP)以及向 5LC / PLC 的迁移一样,都在下一个十年指向 500 层以上和 3 TB 裸片。

另外,Choe 详细说明了闪存的成本是按照每 GB 多少美分来计算的,这意味着未来 3D 闪存的架构将越来越便宜,不过 2D 闪存的价格依然昂贵,甚至比 3D 闪存贵很多倍。

谈到尖端闪存技术的推进,Choe 认为尖端闪存总是首先进入移动和嵌入式产品,例如 5G 手机是当下的主要驱动力。他还指出,2D 平面闪存仍然有一些应用市场,通常将其视为低延迟 SLC 用作 3D XPiont 的存储类内存(SCM)的替代品,如 Optane 或美光最近发布的 X100,尽管 X100 在消费市场并不常见。

目前,100 层以上的 3D 闪存产品,目前已经发布了 SK 海力士 128L Gold P31 和三星 128L 980 PRO,美光最近也基于 176L flash 发布了 Phison E18 的硬盘原型。另外,西部数据和铠侠的 BiCS5 和英特尔的 144 层产品将在明年发布。

更好的控制器需要更高密度的闪存,未来几年闪存将向更快和更大容量的方向发展。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 闪存
    +关注

    关注

    16

    文章

    1768

    浏览量

    114753
  • 3D
    3D
    +关注

    关注

    9

    文章

    2847

    浏览量

    107236
  • 存储器
    +关注

    关注

    38

    文章

    7413

    浏览量

    163466
收藏 人收藏

    评论

    相关推荐

    预期提前,铠侠再次加速,3D NAND准备冲击1000层

    电子发烧友网报道(文/黄山明)近日,铠侠再次宣布,将在2027年实现3D NAND的1000层堆叠,而此前铠侠计划是在2031年批量生产超1000层的3D NAND存储器。三星也在此前
    的头像 发表于 06-29 00:03 4377次阅读

    3D打印技术应用的未来

    进一步拓宽 生物医疗 : 3D打印技术能够根据患者的具体需要定制化生产义肢、植入物等,极大地提高了医疗效果和患者的生活质量。 未来3D打印技术甚至可能打印出功能性组织和器官,解决器官移植中的供体短缺问题。 新能源 :
    的头像 发表于 10-25 09:28 316次阅读

    3D 建模:塑造未来的无限可能

    在当今数字化飞速发展的时代,3D 建模正以惊人的力量改变着我们的生活和工作方式。它不仅是一项创新的技术,更是开启未来之门的钥匙。 3D或三维这个术语指的是三个空间维度:宽度、高度和深度
    的头像 发表于 08-16 18:24 1499次阅读

    3D视觉技术在惯性环上料领域的未来发展

    随着制造业的智能化和自动化水平不断提升,惯性环作为汽车发动机减震器中的核心组件,其精准、高效的上料过程显得尤为关键。作为实现这一目标的重要技术手段,3D视觉技术在惯性环上料领域的应用前景十分广阔。本文将从技术革新、应用场景拓展以及系统集成化等角度,探讨3D视觉技术在惯性环
    的头像 发表于 05-21 16:06 264次阅读
    <b class='flag-5'>3D</b>视觉技术在惯性环上料领域的<b class='flag-5'>未来</b><b class='flag-5'>发展</b>

    超越未来:智能运维与震撼3D园区

    在当今社会,智慧园区已经不再只是一个概念,而是成为了许多城市发展的重要目标。智慧园区的发展离不开集成运维和3D可视化园区的支持。本文将详细介绍智慧园区、集成运维和3D可视化园区的概念、
    的头像 发表于 04-30 14:25 230次阅读

    请问3D NAND如何进行台阶刻蚀呢?

    3D NAND的制造过程中,一般会有3个工序会用到干法蚀刻,即:台阶蚀刻,channel蚀刻以及接触孔蚀刻。
    的头像 发表于 04-01 10:26 729次阅读
    请问<b class='flag-5'>3D</b> <b class='flag-5'>NAND</b>如何进行台阶刻蚀呢?

    有了2D NAND,为什么要升级到3D呢?

    2D NAND3D NAND都是非易失性存储技术(NVM Non-VolatileMemory),属于Memory(存储器)的一种。
    的头像 发表于 03-17 15:31 873次阅读
    有了2<b class='flag-5'>D</b> <b class='flag-5'>NAND</b>,为什么要升级到<b class='flag-5'>3D</b>呢?

    裸眼3D频频“出圈” 电信积极布局并发力裸眼3D领域

    随着科技的发展,现在3D视角已经不是新鲜事。而现在,裸眼3D应用则也在频频“出圈”。特别是在5G的助力下,裸眼3D技术应用更是成为科技圈一个热点。
    的头像 发表于 03-11 17:33 599次阅读

    3D HMI应用场景和发展趋势

    随着科技的飞速发展,人机交互(HMI)设计也在不断演进。传统的HMI设计主要基于二维界面和传统的输入设备,如按钮、旋钮和触摸屏等。然而,随着3D技术的不断成熟,3DHMI设计正在成为未来
    的头像 发表于 02-19 13:27 941次阅读
    <b class='flag-5'>3D</b> HMI应用场景和<b class='flag-5'>发展</b>趋势

    三星将推出GDDR7产品及280层堆叠的3D QLC NAND技术

    三星将在IEEE国际固态电路研讨会上展示其GDDR7产品以及280层堆叠的3D QLC NAND技术。
    的头像 发表于 02-01 10:35 713次阅读

    提供3D打印材料与解决方案,助力3D打印产业发展

    提供3D打印材料与解决方案,助力3D打印产业发展
    的头像 发表于 12-12 11:12 486次阅读

    3D 封装与 3D 集成有何区别?

    3D 封装与 3D 集成有何区别?
    的头像 发表于 12-05 15:19 935次阅读
    <b class='flag-5'>3D</b> 封装与 <b class='flag-5'>3D</b> 集成有何区别?

    什么是摩尔定律,“摩尔定律2.0”从2D微型化到3D堆叠

    3D实现方面,存储器比逻辑更早进入实用阶段。NAND闪存率先迈向3D 。随着目前量产的20-15nm工艺,所有公司都放弃了小型化,转而转向存储单元的三维堆叠,以提高每芯片面积的位密度。它被称为“
    的头像 发表于 12-02 16:38 1444次阅读
    什么是摩尔定律,“摩尔定律2.0”从2<b class='flag-5'>D</b>微型化到<b class='flag-5'>3D</b>堆叠

    提高3D NAND闪存存储密度的四项基本技术

    增加3D(三维)NAND闪存密度的方法正在发生变化。这是因为支持传统高密度技术的基本技术预计将在不久的将来达到其极限。2025 年至 2030 年间,新的基础技术的引入和转化很可能会变得更加普遍。
    的头像 发表于 11-30 10:20 814次阅读
    提高<b class='flag-5'>3D</b> <b class='flag-5'>NAND</b>闪存存储密度的四项基本技术

    当芯片变身 3D系统,3D异构集成面临哪些挑战

    当芯片变身 3D 系统,3D 异构集成面临哪些挑战
    的头像 发表于 11-24 17:51 731次阅读
    当芯片变身 <b class='flag-5'>3D</b>系统,<b class='flag-5'>3D</b>异构集成面临哪些挑战