0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何减轻基于AI的视觉系统的负担?

璟琰乀 来源:安森美半导体 作者:Ganesh Narayanaswamy 2020-11-24 14:39 次阅读

视觉传感器对于数据采集正变得越来越重要。

最初的简单图像传感器为摄影应用开发,如今的图像传感器用于向人工智能AI)和机器学习系统提供高质量的输入。

这些系统已成为利用新的和创新的处理器架构的精密决策实体。

边缘数据采集

尽管边缘数据采集器件本质上主要是模拟的,但是图像传感器的独特之处在于:

它们的输出在连续的动态光学输入上进行时分复用

它们需要有能力在输出时保持转换后的光输入的完整性来提供图像输出

提供的图像输出具有最佳质量,支持重要的处理

这些要求和随后的结果可能会对视觉系统做出的决策的准确性产生重大影响,而这一结果定义了整个自动化系统的安全性、可靠性和收益率。

基于机器学习的视觉系统

机器学习的出现推动了图像传感器的创新,其性能水平得到了提高,可以支持各种应用。视觉输入是高保真数据–您所看到的就是输入到系统中的信息

如今,AI算法能够检测、识别和分类这些输入并生成准确的决策输出。这些输出的可靠性取决于输入的质量及其算法的准确性,以及处理这些算法的神经网络

基于机器学习和深度学习的视觉系统主要使用卷积神经网络(CNN)算法来创建功能强大的自动识别专家系统。

在这些系统中,增加CNN层的深度会提高推理的准确性,但是更多的层也会对这些网络在训练阶段学习所花费的时间以及系统完成推断的延迟产生不利影响 (不要忘了过拟合也会影响结果和功耗)。

同样,高质量的图像输出使视觉系统能够携带最少的CNN图层集,但还能产生高度准确的推断。在以低成本和小尺寸获得可快速部署的智能系统的同时,还实现高性能和低功耗,这带来了显著的好处。

典型的卷积神经网络(CNN)

深度学习算法如CNN资源极其密集。如今,有各种处理引擎,包括CPUGPUFPGA、专用加速器和最新微控制器

设计基于CNN的视觉系统还需要强大的优化库支持。涵盖从专有(如MVTec的HALCON&MERLIC,MATLAB的深度学习工具箱或Cognex的ViDi)到标准工具(如OpenCV)以及软硬件的整合功能。

这些选择直接关系到产品的上市时间。资源密集型处理器通常需要更大的外形尺寸,如散热器的功耗附加组件,或者仅需要较大的空闲空间以通过对流来耗散功率。

提供高质量输出的图像传感器可无需昂贵的处理器、昂贵的第三方库和/或新库的创建需求,以及最佳地结合硬件和软件资源所需的昂贵工具。

换句话说,这些传感器极大地降低了总拥有成本(TCO),并增加了在各种应用和市场中的采用率。

图像传感器输入到机器学习系统

对传递到CNN层的图像传感器输出有相当高的要求,包括:

全局快门可以捕获场景并保留场景以最小化运动伪影

高全局快门效率,以确保每个像素中保留的场景不会被该像素光路之外的光输入破坏

足够大的像素尺寸,即使在充满挑战的光线条件下也能支持好的图像质量

图像输出中的总噪声低,以确保高完整性输入

在运行和待机状态下低功耗,应对以对流传热为常态的摄像系统的典型挑战。

这些特性取决于像素架构和相关电路径的设计。CMOS图像传感器的结构和设计如AR0234CS满足这些需求,非常适合基于CNN的视觉系统。

高速接口赋能快速系统

像素的质量可能极佳,且经过精心设计以生成高质量的图像,但是由于带宽限制,整个视觉系统可能仍会出现性能不佳的情况。当今的传感器都配备了SerDes接口,但是这些接口的流量数据速率会影响整个系统的质量。

高帧速率要求这些接口以高速传输图像数据。同样,传感器必须为每帧输出(fps/mW)消耗低功耗。这些特性支持将系统定时和功率预算转移到最需要的地方-处理引擎-可以合并最新的神经网络和复杂算法。

这使图像处理器能够提取图像数据中的细微差别,这些差别可能是应用的重要内容。视觉系统开发人员因此可以使其系统方案在竞争中脱颖而出。

AR0234CS 230万像素CMOS图像传感器具备高数据速率MIPI接口,非常适合基于AI的视觉系统。加上它高帧速率、低功耗全帧速率和全分辨率,视觉系统开发人员可以将大部分时间和功耗预算分配给处理器。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2552

    文章

    51233

    浏览量

    754717
  • 处理器
    +关注

    关注

    68

    文章

    19349

    浏览量

    230278
  • AI
    AI
    +关注

    关注

    87

    文章

    31140

    浏览量

    269478
  • 机器学习
    +关注

    关注

    66

    文章

    8425

    浏览量

    132772
收藏 人收藏

    评论

    相关推荐

    安森美机器视觉系统解决方案

    ,它还用于验证数据矩阵码、检查食品包装和读取条形码。机器视觉系统方案指南将全面介绍机器视觉系统方案及市场趋势,本文为第二部分,将重点介绍系统描述、方案概述、系统实现。
    的头像 发表于 11-14 09:53 277次阅读
    安森美机器<b class='flag-5'>视觉系统</b>解决方案

    康耐视AI视觉系统助力自动化精准检测

    凭借高精度图像分析、物体表面识别检测、精准定位等功能,视觉系统为自动化流程的高效运行提供了关键技术支持。
    的头像 发表于 10-25 10:32 246次阅读

    CCD机器视觉系统的工作原理和特性

    随着科技的飞速发展,机器视觉技术已成为工业自动化、质量检测、智能监控等领域的重要支撑。CCD机器视觉系统作为机器视觉技术的核心组成部分,以其高清晰度、高可靠性、实时性强等特点,得到了广泛应用。本文将
    的头像 发表于 06-06 16:27 1384次阅读

    机器视觉系统与运动控制系统的区别

      在工业自动化和智能制造的浪潮中,机器视觉系统和运动控制系统作为两大关键技术,各自扮演着不可或缺的角色。它们虽然都是为了实现更高效、更精确的自动化操作,但在技术原理、功能定位、应用领域等方面却存在显著的区别。本文将从多个维度出发,详细探讨机器
    的头像 发表于 06-06 14:10 877次阅读

    机器视觉系统的工作原理和应用领域

      随着科技的飞速发展,机器视觉系统已成为工业自动化领域不可或缺的一部分。机器视觉系统,顾名思义,就是使用机器来模拟和实现人类视觉的功能,通过图像摄取装置将被摄取目标转换成图像信号,进而利用这些信号
    的头像 发表于 06-06 14:04 1082次阅读

    机器视觉系统读取二维码-软硬件配置方案

    机器视觉系统读取二维码-软硬件配置方案
    的头像 发表于 05-24 00:56 651次阅读
    机器<b class='flag-5'>视觉系统</b>读取二维码-软硬件配置方案

    机器视觉系统五个模块介绍

    典型的机器视觉系统由五个主要模块组成:照明、镜头、相机、图像采集和视觉处理器。让我们看一下这五个结构的目的、特征和工作原理。机器视觉系统:照明照明是影响机器视觉系统输入数据质量和应用效
    的头像 发表于 05-09 17:13 932次阅读
    机器<b class='flag-5'>视觉系统</b>五个模块介绍

    机器视觉系统的组成部分

    一般来说,一个完整的机器视觉系统由光学系统(光源、镜头、工业相机)、图像采集单元、图像处理单元、执行器和人机界面等模块组成。各功能模块缺一不可、相辅相成。1.照明(光源)照明是影响机器视觉系统输入
    的头像 发表于 04-29 14:51 1351次阅读
    机器<b class='flag-5'>视觉系统</b>的组成部分

    海伯森携其最新技术成果亮相武汉VisionCon视觉系统设计技术会议

    一场汇聚视觉系统设计精英的盛会——VisionCon视觉系统设计技术会议,于4月17日在武汉隆重举行。
    的头像 发表于 04-23 14:24 438次阅读

    Cognex发布了In-Sight® L38 3D视觉系统,为3D检测设立新标准

    人工智能(AI)驱动的3D视觉系统为自动化制造提供快速部署和可靠的检测功能。
    的头像 发表于 04-15 09:04 475次阅读

    请问DMA控制器可以减轻CPU负担吗?

    直接存储器访问 ( DMA )控制器,可以在内存和/或外设之间传输数据,而不需要 CPU 参与每次传输。合理利用 DMA 控制器,可以减轻CPU的负担
    的头像 发表于 03-28 09:41 742次阅读
    请问DMA控制器可以<b class='flag-5'>减轻</b>CPU<b class='flag-5'>负担</b>吗?

    视觉系统所使用的相机种类介绍

    视觉系统所使用的 CCD 拍摄元件是以格子状排列的较小像素的集合体。在作为标准型经常使用的 31 万像素 CCD 中,存在称为高像素型的 200 至 2100 万像素 CCD。
    发表于 03-18 09:50 696次阅读
    <b class='flag-5'>视觉系统</b>所使用的相机种类介绍

    机器人视觉系统深度解析

    从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分。
    发表于 03-05 11:39 512次阅读
    机器人<b class='flag-5'>视觉系统</b>深度解析

    机器视觉系统和人工智能有什么区别

    机器视觉系统的特点是:非接触测量,对于观测者与被观测者都不会产生任何损伤,从而提高系统的可靠性;具有较宽的光谱响应范围,例如使用人眼看不见的红外测量,扩展了人眼的视觉范围。
    的头像 发表于 02-27 18:12 1772次阅读
    机器<b class='flag-5'>视觉系统</b>和人工智能有什么区别

    机器视觉系统中常用摄像机的分类

    摄像机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成为有序的电信号。选择合适的摄像机也是机器视觉系统设计中的重要环节,摄像机的不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整全系统的运行模式直接相关。
    发表于 01-19 09:23 706次阅读
    机器<b class='flag-5'>视觉系统</b>中常用摄像机的分类