0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用TensorFlow Hub的ESRGAN模型来在安卓app中生成超分图片

Tensorflowers 来源:TensorFlow 作者:魏巍 2020-11-26 09:40 次阅读

从一张低分辨率的图片生成一张对应的高分辨率图片的任务通常被称为单图超分(Single Image Super Resolution - SISR)。尽管可以使用传统的插值方法(如双线性插值和双三次插值)来完成这个任务,但是产生的图片质量却经常差强人意。深度学习,尤其是对抗生成网络 GAN,已经被成功应用在超分任务上,比如 SRGAN 和 ESRGAN 都可以生成比较真实的超分图片。那么在本文里,我们将介绍一下如何使用TensorFlow Hub上的一个预训练的 ESRGAN 模型来在一个安卓 app 中生成超分图片。最终的 app 效果如下图,我们也已经将完整代码开源给大家参考。

SRGAN
https://arxiv.org/abs/1609.04802

ESRGAN
https://arxiv.org/abs/1809.00219

完整代码
https://github.com/tensorflow/examples/tree/master/lite/examples/super_resolution

首先,我们可以很方便的从 TFHub 上加载 ESRGAN 模型,然后很容易的将其转化为一个 TFLite 模型。注意在这里我们使用了动态范围量化(dynamic range quantization),并将输入图片的尺寸固定在50x50像素(我们已经将转化后的模型上传到 TFHub 上了):

model = hub.load("https://tfhub.dev/captain-pool/esrgan-tf2/1") concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY] concrete_func.inputs[0].set_shape([1, 50, 50, 3]) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() # Save the TF Lite model. with tf.io.gfile.GFile('ESRGAN.tflite', 'wb') as f: f.write(tflite_model) esrgan_model_path = './ESRGAN.tflite'

TFHub
https://hub.tensorflow.google.cn/

TFHub(转化后模型)
https://hub.tensorflow.google.cn/captain-pool/lite-model/esrgan-tf2/1

现在 TFLite 已经支持动态大小的输入,所以你也可以在模型转化的时候不指定输入图片的大小,而在运行的时候动态指定。如果你想使用动态输入大小,请参考这个例子。

例子
https://github.com/tensorflow/tensorflow/blob/c58c88b23122576fc99ecde988aab6041593809b/tensorflow/lite/python/lite_test.py#L529-L560

模型转化完之后,我们可以很快验证 ESRGAN 生成的超分图片质量确实比双三次插值要好很多。如果你想更多的了解 ESRGAN 模型,我们还有另外一个教程可供参考:

lr = cv2.imread(test_img_path) lr = cv2.cvtColor(lr, cv2.COLOR_BGR2RGB) lr = tf.expand_dims(lr, axis=0) lr = tf.cast(lr, tf.float32) # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path=esrgan_model_path) interpreter.allocate_tensors() # Get input and output tensors. input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Run the model interpreter.set_tensor(input_details[0]['index'], lr) interpreter.invoke() # Extract the output and postprocess it output_data = interpreter.get_tensor(output_details[0]['index']) sr = tf.squeeze(output_data, axis=0) sr = tf.clip_by_value(sr, 0, 255) sr = tf.round(sr) sr = tf.cast(sr, tf.uint8)

教程
https://tensorflow.google.cn/hub/tutorials/image_enhancing

LR: 输入的低分辨率图片,该图从 DIV2K 数据集中的一张蝴蝶图片中切割出来. ESRGAN (x4): ESRGAN 模型生成的超分图片,单边分辨率提升4倍. Bicubic: 双三次插值生成图片. 在这里大家可以很容易看出来,双三次插值生成的图片要比 ESRGAN 模型生成的超分图片模糊很多

你可能已经知道,TensorFlow Lite 是 TensorFlow 用于在端侧运行的官方框架,目前全球已有超过40亿台设备在运行 TFLite,它可以运行在安卓,iOS,基于 LinuxIoT 设备以及微处理器上。你可以使用 Java, C/C++ 或其他编程语言来运行 TFLite。在这篇文章中,我们将使用 TFLite C API,因为有许多的开发者表示希望我们能提供这样一个范例。

DIV2K
https://data.vision.ee.ethz.ch/cvl/DIV2K/

Java, C/C++
https://tensorflow.google.cn/lite/guide/android

TFLite C API
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/c/c_api.h

我们在预先编译好的 AAR 文件中包含了 TFLite C API需要的头文件和库 (包括核心库和 GPU 库)。为了正确的设置好 Android 项目,我们首先需要下载两个 JAR 文件并将相应的头文件和库抽取出来。我们可以在一个 download.gradle 文件中定义这些任务,然后将这些任务导入 build.gradle。下面我们先定义下载 TFLite JAR 文件的两个任务:

task downloadTFLiteAARFile() { download { src "https://bintray.com/google/tensorflow/download_file?file_path=org%2Ftensorflow%2Ftensorflow-lite%2F2.3.0%2Ftensorflow-lite-2.3.0.aar" dest "${project.rootDir}/libraries/tensorflow-lite-2.3.0.aar" overwrite false retries 5 } } task downloadTFLiteGPUDelegateAARFile() { download { src "https://bintray.com/google/tensorflow/download_file?file_path=org%2Ftensorflow%2Ftensorflow-lite-gpu%2F2.3.0%2Ftensorflow-lite-gpu-2.3.0.aar" dest "${project.rootDir}/libraries/tensorflow-lite-gpu-2.3.0.aar" overwrite false retries 5 } }

AAR 文件
https://tensorflow.google.cn/lite/guide/android#use_tflite_c_api

然后我们定义另一个任务来讲头文件和库解压然后放到正确的位置:

task fetchTFLiteLibs() { copy { from zipTree("${project.rootDir}/libraries/tensorflow-lite-2.3.0.aar") into "${project.rootDir}/libraries/tensorflowlite/" include "headers/tensorflow/lite/c/*h" include "headers/tensorflow/lite/*h" include "jni/**/libtensorflowlite_jni.so" } copy { from zipTree("${project.rootDir}/libraries/tensorflow-lite-gpu-2.3.0.aar") into "${project.rootDir}/libraries/tensorflowlite-gpu/" include "headers/tensorflow/lite/delegates/gpu/*h" include "jni/**/libtensorflowlite_gpu_jni.so" }

因为我们是用安卓 NDK 来编译这个 app,我们需要让 Android Studio 知道如何处理对应的原生文件。我们在 CMakeList.txt 文件中这样写:

set(TFLITE_LIBPATH "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite/jni") set(TFLITE_INCLUDE "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite/headers") set(TFLITE_GPU_LIBPATH "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite-gpu/jni") set(TFLITE_GPU_INCLUDE "${CMAKE_CURRENT_SOURCE_DIR}/../../../../libraries/tensorflowlite-gpu/headers") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=gnu++14") set(CMAKE_CXX_STANDARD 14) add_library(SuperResolution SHARED SuperResolution_jni.cpp SuperResolution.cpp) add_library(lib_tensorflowlite SHARED IMPORTED) set_target_properties(lib_tensorflowlite PROPERTIES IMPORTED_LOCATION ${TFLITE_LIBPATH}/${ANDROID_ABI}/libtensorflowlite_jni.so) add_library(lib_tensorflowlite_gpu SHARED IMPORTED) set_target_properties(lib_tensorflowlite_gpu PROPERTIES IMPORTED_LOCATION ${TFLITE_GPU_LIBPATH}/${ANDROID_ABI}/libtensorflowlite_gpu_jni.so) find_library(log-lib log) include_directories(${TFLITE_INCLUDE}) target_include_directories(SuperResolution PRIVATE ${TFLITE_INCLUDE}) include_directories(${TFLITE_GPU_INCLUDE}) target_include_directories(SuperResolution PRIVATE ${TFLITE_GPU_INCLUDE}) target_link_libraries(SuperResolution android lib_tensorflowlite lib_tensorflowlite_gpu ${log-lib})

我们在 app 里包含了3个示例图片,这样用户可能会运行同一个模型多次,这意味着为了提高运行效率,我们需要将 TFLite 解释执行器进行缓存。这一点我们可以在解释执行器成功建立后通过将其指针从 C++ 传回到 Java 来实现:

extern "C" JNIEXPORT jlong JNICALL Java_org_tensorflow_lite_examples_superresolution_MainActivity_initWithByteBufferFromJNI(JNIEnv *env, jobject thiz, jobject model_buffer, jboolean use_gpu) { const void *model_data = static_cast(env->GetDirectBufferAddress(model_buffer)); jlong model_size_bytes = env->GetDirectBufferCapacity(model_buffer); SuperResolution *super_resolution = new SuperResolution(model_data, static_cast(model_size_bytes), use_gpu); if (super_resolution->IsInterpreterCreated()) { LOGI("Interpreter is created successfully"); return reinterpret_cast(super_resolution); } else { delete super_resolution; return 0; } }

解释执行器建立之后,运行模型实际上就非常简单了,我们只需要按照 TFLite C API 来就好。不过我们需要注意的是如何从每个像素中抽取 RGB 值:

// Extract RGB values from each pixel float input_buffer[kNumberOfInputPixels * kImageChannels]; for (int i = 0, j = 0; i < kNumberOfInputPixels; i++) { // Alpha is ignored input_buffer[j++] = static_cast((lr_img_rgb[i] >> 16) & 0xff); input_buffer[j++] = static_cast((lr_img_rgb[i] >> 8) & 0xff); input_buffer[j++] = static_cast((lr_img_rgb[i]) & 0xff); }

TFLite C API
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/c/c_api.h

运行完模型后我们需要再将 RGB 值再打包进每个像素:

// Postprocess the output from TFLite int clipped_output[kImageChannels]; auto rgb_colors = std::make_unique(kNumberOfOutputPixels); for (int i = 0; i < kNumberOfOutputPixels; i++) { for (int j = 0; j < kImageChannels; j++) { clipped_output[j] = std::max(0, std::min(255, output_buffer[i * kImageChannels + j])); } // When we have RGB values, we pack them into a single pixel. // Alpha is set to 255. rgb_colors[i] = (255u & 0xff) << 24 | (clipped_output[0] & 0xff) << 16 | (clipped_output[1] & 0xff) << 8 | (clipped_output[2] & 0xff); }

那么到这里我们就完成了这个 app 的关键步骤,我们可以用这个 app 来生成超分图片。您可以在对应的代码库中看到更多信息。我们希望这个范例能作为一个好的参考来帮助刚刚起步的开发者更快的掌握如何使用 TFLite C/C++ API 来搭建自己的机器学习 app。

对应的代码库中
https://github.com/tensorflow/examples/tree/master/lite/examples/super_resolution

致谢

作者十分感谢 @captain__pool 将他实现的 ESRGAN 模型上传到 TFHub, 以及 TFLite 团队的 Tian Lin 和 Jared Duke 提供十分有帮助的反馈。

— 参考 —

[1] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi. 2016. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network.

[2] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy, Yu Qiao, Xiaoou Tang. 2018. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.

[3] Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

https://github.com/krasserm/super-resolution

[4] @captain__pool 的 ESGRAN 代码实现

https://github.com/captain-pool/GSOC

[5] Eirikur Agustsson, Radu Timofte. 2017. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study.

责任编辑:xj

原文标题:学习教程 | 使用 TensorFlow Lite 在 Android App 中生成超分图片

文章出处:【微信公众号:TensorFlow】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Android
    +关注

    关注

    12

    文章

    3921

    浏览量

    127089
  • APP
    APP
    +关注

    关注

    33

    文章

    1566

    浏览量

    72354
  • tensorflow
    +关注

    关注

    13

    文章

    328

    浏览量

    60482

原文标题:学习教程 | 使用 TensorFlow Lite 在 Android App 中生成超分图片

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    APP开发中,如何使用加密芯片?

    加密芯片是一种专门设计用于保护信息安全的硬件设备,它通过内置的加密算法对数据进行加密和解密,以防止敏感数据被窃取或篡改。如下图HD-RK3568-IOT工控板,搭载ATSHA204A加密芯片,常用于有安全防护要求的工商业场景,下文将为大家介绍
    的头像 发表于 10-31 17:43 290次阅读
    <b class='flag-5'>安</b><b class='flag-5'>卓</b><b class='flag-5'>APP</b>开发中,如何使用加密芯片?

    AIC3262 CODEC能否下运用?

    我们有多路音频混音应用需求(双路MIC. LINE IN, I2S 音源输入,耳机输出监听及混音后录音),针对混音还有通过DSP 作混响, 10段EQ应用, 该装置需要在环境下运行。不知TI AIC3262 CODEC能否
    发表于 10-29 08:19

    TAS5731想在app中的平衡器界面中直观的根据对应频率的值调整寄存器值有什么方法吗?

    想在app中的平衡器界面中直观的根据对应频率的值调整寄存器值有什么方法吗? 之前是通过TAS57X1 GDE工具调好后生成的参数设置值写进去,每次只能调好一组参数设置进去
    发表于 10-22 07:30

    快速部署Tensorflow和TFLITE模型Jacinto7 Soc

    电子发烧友网站提供《快速部署Tensorflow和TFLITE模型Jacinto7 Soc.pdf》资料免费下载
    发表于 09-27 11:41 0次下载
    快速部署<b class='flag-5'>Tensorflow</b>和TFLITE<b class='flag-5'>模型</b><b class='flag-5'>在</b>Jacinto7 Soc

    工控机inbox系列有不支持32位app的吗?

    工控机 inbox系列有不支持32位app的吗
    发表于 07-24 06:59

    如何在Tensorflow中实现反卷积

    TensorFlow中实现反卷积(也称为转置卷积或分数步长卷积)是一个涉及多个概念和步骤的过程。反卷积在深度学习领域,特别是图像分割、图像分辨率、以及
    的头像 发表于 07-14 10:46 529次阅读

    使用TensorFlow进行神经网络模型更新

    使用TensorFlow进行神经网络模型的更新是一个涉及多个步骤的过程,包括模型定义、训练、评估以及根据新数据或需求进行模型微调(Fine-tuning)或重新训练。下面我将详细阐述这
    的头像 发表于 07-12 11:51 319次阅读

    请问ESP32如何运行TensorFlow模型

    请问ESP32如何运行TensorFlow模型
    发表于 07-09 07:30

    tensorflow简单的模型训练

    本文中,我们将详细介绍如何使用TensorFlow进行简单的模型训练。TensorFlow是一个开源的机器学习库,广泛用于各种机器学习任务,包括图像识别、自然语言处理等。我们将从安装
    的头像 发表于 07-05 09:38 486次阅读

    keras模型tensorflow session

    在这篇文章中,我们将讨论如何将Keras模型转换为TensorFlow session。 Keras和TensorFlow简介 Keras是一个高级神经网络API,它提供了一种简单、快速的方式
    的头像 发表于 07-05 09:36 448次阅读

    如何使用Tensorflow保存或加载模型

    TensorFlow是一个广泛使用的开源机器学习库,它提供了丰富的API构建和训练各种深度学习模型模型训练完成后,保存
    的头像 发表于 07-04 13:07 1242次阅读

    谷歌模型怎么用PS打开文件和图片

    谷歌模型本身并不是用Adobe Photoshop(简称PS)打开的文件和图片格式。谷歌模型通常是用于机器学习和深度学习的模型文件,如TensorF
    的头像 发表于 02-29 18:25 1349次阅读

    GHDS中生成Sprite顺序,程序无法正常运行是怎么回事?

    你好:我有一个关于GHDS中生成Sprite顺序的问题,当我GHDS中建立多个Sprite,其中包括单个符号片、通过刷新图片的几组数据,和背景
    发表于 02-22 07:23

    如何使用TensorFlow构建机器学习模型

    在这篇文章中,我将逐步讲解如何使用 TensorFlow 创建一个简单的机器学习模型
    的头像 发表于 01-08 09:25 899次阅读
    如何使用<b class='flag-5'>TensorFlow</b>构建机器学习<b class='flag-5'>模型</b>

    画质大模型!华为和清华联合提出CoSeR:基于认知的万物模型

    一是缺乏泛化能力。为了实现更好的效果,通常需要针对特定场景使用特定传感器采集到的数据进行模型训练,这种学习方式拟合了某种低清图像和高清图像间的映射,但在其他场景下表现不佳。此外,
    的头像 发表于 12-04 16:22 655次阅读
    <b class='flag-5'>超</b><b class='flag-5'>分</b>画质大<b class='flag-5'>模型</b>!华为和清华联合提出CoSeR:基于认知的万物<b class='flag-5'>超</b><b class='flag-5'>分</b>大<b class='flag-5'>模型</b>