0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Python的PyCoral迎来多项更新,为边缘AI注入更多精彩

Tensorflowers 来源:TensorFlow 作者: Carlos Mendonça,C 2020-11-26 09:47 次阅读

冬天终于来了,而与之一起到来的是 Coral 新发布的 C++Python API 及工具,还有针对 Edge TPU 优化的新模型,以及对基于 TensorFlow 2.0 工作流的进一步支持。

C++
https://github.com/google-coral/libcoral

Python API
https://github.com/google-coral/pycoral

针对 Edge TPU 优化
https://coral.ai/models

Coral(https://coral.ai)是一个可用于构建本地 AI 产品的完整工具包。我们的设备端推理功能,以及借助 TensorFlow Lite 和 Edge TPU,支持您构建高效、私密、快速和离线的产品。

TensorFlow Lite 和 Edge TPU
https://coral.ai/technology

之前,我们提供了 Python 和 C++ 版本的 API,从而让开发者可以利用 Edge TPU 来提高推理速度。通过对机器学习模型进行离线处理的方式,可以大大节省带宽和云计算成本。同时这样做也可以使数据保留在本地,保护用户的隐私。最近,我们一直在努力重构我们的 API,使其更加模块化、重用性更强并拥有更好的性能。与此同时,我们还在减少不必要的 API 抽象,并开放开发者所熟悉的更多原生 TensorFlow Lite API。

因此,在最新的版本中,我们现在提供了两个独立的复用库,每个库都依托于强大的 TensorFlow Lite API 构建而成,并且在自己的存储库中各自独立,其分别是适用于 C++ 的 libcoral 和适用于 Python 的 PyCoral。

libcoral
https://github.com/google-coral/libcoral

Python 的PyCoral
https://github.com/google-coral/pycoral

libcoral (C++)

与我们之前的一些 API 不同,libcoral 并不会隐藏 tflite::Interpreter。相反,我们会将这个原生的 TensorFlow Lite 类打造成一个头等组件,并提供一些额外的辅助 API,以在您处理常见模型(例如分类和检测)时,帮您简化代码。

使用新的 libcoral 库在 C++ 中执行推理时,开发者通常应该遵循以下模式:

1. 使用 Edge TPU 上下文创建 tflite::Interpreter 实例并分配内存

为简化这一步骤,libcoral 提供了 MakeEdgeTpuInterpreter() 函数:

// Load the model auto model = coral::GetFlag(FLAGS_model_path)); // Get the Edge TPU context auto tpu_context = coral::ContainsEdgeTpuCustomOp(*model) ? coral::GetEdgeTpuContextOrDie() : nullptr; // Get the interpreter auto interpreter = coral::MakeEdgeTpuInterpreterOrDie( *model, tpu_context.get());

2. 配置 interpreter 的输入

3. 调用 interpreter:

interpreter->Invoke();

作为 Invoke() 的替代方案,您可以使用 InvokeWithMemBuffer() 和 InvokeWithDmaBuffer() 函数来实现更高的性能,这两个函数可以分别处理输入数据而无需从另一个内存区域或从DMA文件描述符进行复制。

4. 处理 interpreter 的输出

为简化这一步骤,libcoral 提供了一些适配器,所需的代码更少:

auto result = coral::GetClassificationResults( *interpreter, /* threshold= */0.0f, /*top_k=*/3);

上方是分类适配器的示例,开发者可以在其中指定最小置信度阈值,以及返回结果的数量上限。该 API 还具有一个检测适配器,该适配器拥有自己的结果过滤参数

如需查看完整的示例应用源代码,请参阅 GitHub 上的 classify_image.cc,如需获取有关如何将 libcoral 集成到应用中的说明,请参考 GitHub 上的 README.md。

GitHub 上的 classify_image.cc
https://github.com/google-coral/libcoral/blob/master/coral/examples/classify_image.cc

GitHub 上的 README.md
https://github.com/google-coral/libcoral/blob/master/README.md

我们还在此次的新版本中带来了对设备端再训练的更新,能够在更新的 ImprintingEngine 上将 imprinting 函数与推理解耦。新的设计让 imprinting 引擎能够直接与 tflite::Interpreter 一起使用。

为方便寻找主机上可用的 Edge TPU,libcoral 支持诸如 "usb:0" 或 "pci:1" 之类的标签。您可借此更加轻松地管理多 Edge TPU 系统的资源。

最后,我们做了很多性能上的改进,例如更高效的内存使用和基于内存而不是基于文件的抽象。此外,通过将 Abseil(https://abseil.io/)库用于误差传播、通用接口和其他常见模式,API 的设计也更加一致,应该可以提供更一致和稳定的开发者体验。

PyCoral (Python)

新的 PyCoral 库(在新的 pycoral Python 模块中提供)遵循了 libcoral 引入的一些设计模式,并为我们的 C++ 和 Python API 带来了平衡。PyCoral 为分类和检测以及基于相同标签的 TPU 语义寻址设计了相同的 imprinting 解耦设计和模型适配器。

在 PyCoral 中,“运行推理”功能现在已完全委托给原生的 TensorFlow Lite 库,这是因为我们放弃了用于抽象 TensorFlow 解释器的模型“引擎”。借助这项更改,我们消除了由特定于 Coral 的 BasicEngine、ClassificationEngine 和 DetectionEngine 类(这些来自“Edge TPU Python 库”的 API 现已被弃用)所引入的代码重复。

要使用 PyCoral 执行推理,我们可以遵循与 libcoral 类似的模式:

1. 创建 interpreter:

interpreter = edgetpu.make_interpreter(model_file) interpreter.allocate_tensors()

2. 配置 interpreter 的输入:

common.set_input(interpreter, image)

3. 调用 interpreter:

interpreter.invoke()

4. 处理 interpreter 的输出:

classes = classify.get_classes(interpreter, top_k=3)

如需获取完整详细的示例代码,请查看我们的 Python 版文档 (https://coral.ai/docs/edgetpu/tflite-python/)。

Coral Model Garden 更新

在这一版本中,我们通过 MobileDet 进一步扩展了 Coral Model Garden。MobileDet 指的是使用 TensorFlow 对象检测 API 的轻量级单发检测器系列,该系列在 Edge TPU 上实现了最先进的精度和延迟权衡。与 MobileNet 系列模型相比,MobileDet 是一种低延迟的检测模型,具有更高的准确性。


查看 Coral 为 Edge TPU 提供的完整模型集合(https://coral.ai/models),其中包括分类、检测、分割和专门为设备端训练准备的模型。

将我们的整个工作流和模型集合迁移到 TensorFlow 2 是一项长期工作。从这个版本的 Coral 机器学习 API 开始,我们将引入对基于 TensorFlow 2 的工作流的支持。目前,MobileNet v1 (ImageNet)、MobileNet v2 (ImageNet)、MobileNet v3 (ImageNet)、ResNet50 v1 (ImageNet) 和 UNet MobileNet v2 (Oxford pets) 均支持使用 TensorFlow 2 进行训练和转换。

Model Pipelining

libcoral 和 PyCoral 都已将 Model Pipelining 功能从测试状态升级到正式使用状态。借助 Model Pipelining 功能,我们能够分割大型模型,然后将其分配到多个 Edge TPU 上,从而大大加快模型的运行速度。


请参考对应文档以查看该 API 的 C++ 和 Python 版本示例。

C++
https://coral.ai/docs/reference/cpp/pipeline/

Python
https://coral.ai/docs/reference/py/pycoral.pipeline/

我们会通过 Edge TPU 编译器完成模型分割,该编译器采用参数计数算法,可将模型分割成参数大小相近的片段。对于此算法无法提供所需吞吐量的情况,我们在这一版本中引入了一个新工具,该工具支持基于分析的算法,通过实际多次运行模型,然后根据观察到的延迟来划分片段,因此可能会得到更平衡的输出。


新的 profiling_partition 工具可以这样使用:

./profiling_partition --edgetpu_compiler_binary $PATH_TO_COMPILER --model_path $PATH_TO_MODEL --output_dir $OUT_DIR --num_segments $NUM_SEGMENTS

了解详情

如需了解有关上述 Coral API 的详细信息,请参阅以下文档:

使用 C++ 在 Edge TPU 上运行推理
https://coral.ai/docs/edgetpu/tflite-cpp/

使用 Python 在 Edge TPU 上运行推理
https://coral.ai/docs/edgetpu/tflite-python/

通过多个 Edge TPU 对模型进行流水设计
https://coral.ai/docs/edgetpu/pipeline/

在 Edge TPU 上执行迁移学习
https://coral.ai/docs/edgetpu/models-intro/#transfer-learning-on-device

Coral Model Garden
https://coral.ai/models

责任编辑:xj

原文标题:Coral 迎来多项更新,为边缘 AI 注入更多精彩!

文章出处:【微信公众号:TensorFlow】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    87

    文章

    30072

    浏览量

    268340
  • C++
    C++
    +关注

    关注

    22

    文章

    2104

    浏览量

    73480
  • python
    +关注

    关注

    55

    文章

    4778

    浏览量

    84439

原文标题:Coral 迎来多项更新,为边缘 AI 注入更多精彩!

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    瑞萨电子边缘AI技术研讨会亮点一览

    解决方案,10月24日携手合作伙伴在深圳举办以“让AI发生”为主题瑞萨电子边缘AI技术研讨会,通过深入的主题演讲、丰富的技术研讨会和实际案例分享,大家呈现一场
    的头像 发表于 10-18 09:23 390次阅读

    什么是边缘AI边缘AI的供电挑战

    RECOM 的 RACM1200-V 采用数字通信,可轻松集成到边缘 AI设计中。
    的头像 发表于 09-02 11:52 391次阅读
    什么是<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>?<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>的供电挑战

    华邦电子边缘设备打造生成式AI性能

    在以大模型基础的云端 AI 广泛赋能各行各业后,边缘设备对于 AI 也释放出巨大需求,AI 也在从云端向
    的头像 发表于 08-19 16:14 564次阅读

    边缘AI放大招!AI模型支持虚拟数智人和机械臂,英特尔边缘平台助力伙伴加速创新

    7月25日,在第17届英特尔网络与边缘计算行业大会上,英特尔和超过400位生态伙伴和客户代表齐聚一堂,共同探讨边缘AI的未来发展趋势,并介绍了众多基于英特尔边缘
    的头像 发表于 07-29 18:05 4515次阅读
    <b class='flag-5'>边缘</b><b class='flag-5'>AI</b>放大招!<b class='flag-5'>AI</b>模型支持虚拟数智人和机械臂,英特尔<b class='flag-5'>边缘</b>平台助力伙伴加速创新

    智能边缘放大招!英特尔举办2024网络与边缘计算行业大会,边缘AI创新助力多元化应用

    今日,第十七届英特尔网络与边缘计算行业大会在天津举行,超过400位生态伙伴和客户代表齐聚一堂,与英特尔共同探讨边缘AI的未来发展趋势,并介绍了众多基于英特尔边缘
    的头像 发表于 07-25 09:10 2939次阅读
    智能<b class='flag-5'>边缘</b>放大招!英特尔举办2024网络与<b class='flag-5'>边缘</b>计算行业大会,<b class='flag-5'>边缘</b><b class='flag-5'>AI</b>创新助力多元化应用

    怎么导出python边缘计算中的APP?

    怎么导出python边缘计算中的APP,想进行修改又找不到源码
    发表于 07-25 06:13

    PythonAI中的应用实例

    Python在人工智能(AI)领域的应用极为广泛且深入,从基础的数据处理、模型训练到高级的应用部署,Python都扮演着至关重要的角色。以下将详细探讨Python
    的头像 发表于 07-19 17:16 919次阅读

    边缘AI需求爆发,边缘计算网关亟待革新

    CAGR17.4%,到2030年达到8004.3百万美元。如果将范围扩大到整个边缘AI市场,根据英特尔公司高级副总裁兼网络与边缘事业部总经理Sachin Katti在分享中提到的数据
    的头像 发表于 06-20 01:04 2682次阅读

    ai边缘盒子有哪些用途?ai视频分析边缘计算盒子详解

    近年来,随着人工智能和边缘计算的发展,一种名为AI边缘盒子的新型设备正逐渐引起广泛关注。作为一种集成了边缘计算和AI算法处理能力的设备,
    的头像 发表于 05-29 14:24 868次阅读
    <b class='flag-5'>ai</b><b class='flag-5'>边缘</b>盒子有哪些用途?<b class='flag-5'>ai</b>视频分析<b class='flag-5'>边缘</b>计算盒子详解

    小鹏汽车迎来AI负责人,研发XNGP技术

    小鹏汽车近日迎来新的AI团队负责人——Cruise公司前高级资深机器学习工程师LiuXianming。他将带领小鹏AI团队研发XNGP技术,公司的自动驾驶领域
    的头像 发表于 03-26 10:43 650次阅读

    英特尔发布全新边缘计算平台,解决AI边缘落地难题

    电子发烧友网报道(文/李弯弯)AI越来越多地在边缘侧部署。Gartner最新预测数据显示,到2025年,50%以上的企业管理数据将在数据中心或云之外创建和处理。随着AI自动化带来
    的头像 发表于 03-12 09:06 4265次阅读
    英特尔发布全新<b class='flag-5'>边缘</b>计算平台,解决<b class='flag-5'>AI</b><b class='flag-5'>边缘</b>落地难题

    什么是AI边缘计算,AI边缘计算的特点和优势介绍

    随着人工智能的迅猛发展,AI边缘计算成为了热门话题。那么什么是AI边缘计算呢?简单来说,它是将人工智能技术引入边缘计算的新兴领域,旨在将计算
    的头像 发表于 02-01 11:42 815次阅读

    RA家庭注入更新安全用户密钥 -应用项目

    电子发烧友网站提供《RA家庭注入更新安全用户密钥 -应用项目.pdf》资料免费下载
    发表于 01-14 11:15 0次下载
    <b class='flag-5'>为</b>RA家庭<b class='flag-5'>注入</b>和<b class='flag-5'>更新</b>安全用户密钥 -应用项目

    边缘AI它到底是什么?能做什么?

    边缘,减少了数据的传输延迟和依赖云端的通信需求。边缘AI能够在接近数据源的设备上进行实时决策和推理,这许多应用领域带来了革命性的改变。 边缘
    的头像 发表于 01-11 14:44 1232次阅读

    算力强劲的AI边缘计算盒子# 边缘计算

    AI边缘计算
    成都华江信息
    发布于 :2023年11月24日 16:31:06