0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能与良好公共政策之间的关系解析

姚小熊27 来源:新技术法学 企鹅号 作者:新技术法学 企鹅号 2020-11-29 10:54 次阅读

世界各地的政府和机构越来越依赖人工智能。美国、英国和其他地方的警察部门已经开始使用面部识别技术来识别潜在的嫌疑人。法官和法院也已经开始依靠机器学习来指导判决。在英国,据说每三个地方政府中就有一个使用算法或机器学习(ML)工具来决定诸如福利待遇申索之类的问题。政府对扔工智能的这些应用非常广泛,以至于人们不禁要问:这是一个按算法管理的时代吗?

许多批判人士对刑事公正和福利等敏感政策领域迅速扩大使用自动决策表示担忧。其中最常表达的担忧是偏差问题:当机器学习系统在有偏差的数据集上进行训练时,它们不可避免地将数据潜在的社会不平等嵌入模型之中。数据科学和人工智能社区现在对数据偏差问题高度敏感,因此开始更加关注人工智能的伦理问题。同样地,个别政府和国际组织也发表了旨在管理人工智能使用的原则声明。

人工智能伦理的一个共同原则是可解释性。产生扩大社会偏见的人工智能的风险促使人们提高算法或机器学习决策过程的透明度。随着人工智能系统的使用激增,能够解释一个给定的模型或系统是如何工作的将是至关重要的,特别是对于那些由政府或公共部门机构使用的模型或系统。然而,光靠解释并不是灵丹妙药。虽然决策过程的透明度对于民主至关重要,但认为这是解决算法决策将给我们的社会带来的困境的一种简单解决方法是错误的。

原因有两个。首先,对于一般的机器学习,特别是神经网络深度学习,在性能和可解释性之间往往会有一个权衡。模型越大、越复杂,就越难解释,尽管它的性能通常更好。不幸的是,对于具有许多交互影响的复杂情况,策略的许多关键领域都是如此,机器学习往往越是黑匣子就越有用。因此,追究这些系统的责任几乎总是一个事后监测和评价的问题。例如,如果一个给定的机器学习算法的决策有明显的偏差,那么系统或其所训练的数据则需要进行修改。然而,即使是事后审计,说起来容易做起来难。在实践中,令人惊讶的是,几乎没有对政策结果进行系统的监测,尽管在如何监测方面并不缺乏指导。

第二个原因是一个更为重大的挑战。许多政策的目的往往不明确,典型的原因是政策是追求不同目标的人之间的妥协。当算法的任务是执行政策决策时,公共政策中的这些必要妥协对其提出了挑战。公共政策中的妥协并不总是坏事;它使得决策者既能解决冲突,又能避免对所期望的确切结果提出尖锐的问题。然而,这是算法的一个主要问题,因为他们需要明确的目标才能发挥作用。强调更大的模型可解释性永远无法解决这一挑战。

在自动决策或预测的许多领域,目标的困境不会突然出现,在这些领域中,受影响和运行苏阿法的人的利益是一致的。然而,在公共决策的大多数领域,存在着多重重叠,有时甚至是相互竞争的利益。通常也存在信任缺失,特别是在刑事司法、治安和福利政策方面。在这种情况下,相信以算法强制实现的目标透明度将解决政治冲突是极其天真的。在部署机器进行决策之前,第一步不是坚持算法的可解释性和透明度,而是恢复机构自身的可信度。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46838

    浏览量

    237498
  • 机器学习
    +关注

    关注

    66

    文章

    8375

    浏览量

    132397
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    嵌入式和人工智能究竟是什么关系? 嵌入式系统是一种特殊的系统,它通常被嵌入到其他设备或机器中,以实现特定功能。嵌入式系统具有非常强的适应性和灵活性,能够根据用户需求进行定制化设计。它广泛应用于各种
    发表于 11-14 16:39

    人工智能云计算大数据三者关系

    人工智能、云计算与大数据之间关系是紧密相连、相互促进的。大数据为人工智能提供了丰富的训练资源和验证环境;云计算为大数据和人工智能提供了强大
    的头像 发表于 11-06 10:03 204次阅读

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    和国际合作等多个层面。这些内容让我更加认识到,在推动人工智能与能源科学融合的过程中,需要不断探索和创新,以应对各种挑战和机遇。 最后,通过阅读这一章,我深刻感受到人工智能对于能源科学的重要性。人工智能
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    阅读这一章后,我深感人工智能与生命科学的结合正引领着一场前所未有的科学革命,以下是我个人的读后感: 1. 技术革新与生命科学进步 这一章详细阐述了人工智能如何通过其强大的数据处理和分析能力,加速生命科学
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的发展机遇。同时,这也要求科研人员、政策制定者和社会各界共同努力,构建一个健康、包容的AI科研生态系统。 总之,《AI for Science:人工智能驱动科学创新》的第一章为我打开了一个全新的视角,让我
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V在人工智能图像处理领域的应用前景十分广阔,这主要得益于其开源性、灵活性和低功耗等特点。以下是对RISC-V在人工智能图像处理应用前景的详细分析: 一、RISC-V的基本特点 RISC-V
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    AI for Science的基础知识,梳理了产业地图,并给出了相关政策启示。 内容提要 人工智能驱动科学创新(AI for Science)带来的产业变革与每个人息息相关。本书聚焦于人工智能与
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    中国移动举办世界人工智能大会人工智能与教育论坛

    7月4日,2024世界人工智能大会人工智能与教育论坛在上海举行。论坛以“智能时代教育变革与人才培养”为主题,旨在探讨智能时代教育公平和质量提升的可持续发展路径,推进拔尖创新人才培养。
    的头像 发表于 07-05 19:07 250次阅读
    中国移动举办世界<b class='flag-5'>人工智能</b>大会<b class='flag-5'>人工智能与</b>教育论坛

    人工智能与机器人的区别

    在当今科技飞速发展的时代,人工智能(AI)和机器人已成为社会关注的热点话题。尽管两者在多个领域有着广泛的应用和交集,但它们本质上是两个不同的概念。本文将从定义、技术方向、功能、应用范围、研究重点及未来发展等方面,详细探讨人工智能与机器人
    的头像 发表于 07-04 17:41 2261次阅读

    人工智能与大模型的关系与区别

    在科技日新月异的今天,人工智能(AI)已成为推动社会进步的重要力量。而在人工智能的众多分支中,大模型(Large Models)作为近年来兴起的概念,以其巨大的参数数量和强大的计算能力,在多个领域展现出了非凡的潜力。本文旨在深入探讨人工
    的头像 发表于 07-04 16:07 3343次阅读

    神经网络和人工智能关系是什么

    神经网络和人工智能关系是密不可分的。神经网络是人工智能的一种重要实现方式,而人工智能则是神经网络应用的广泛领域。本文将介绍神经网络和人工智能
    的头像 发表于 07-03 10:25 943次阅读

    神经网络和人工智能关系

    化时代的到来。本文旨在深入探讨神经网络和人工智能之间关系,通过分点表示和归纳,结合相关数字和信息,为读者提供全面的视角。
    的头像 发表于 07-01 14:23 677次阅读

    嵌入式人工智能的就业方向有哪些?

    嵌入式人工智能的就业方向有哪些? 在新一轮科技革命与产业变革的时代背景下,嵌入式人工智能成为国家新型基础建设与传统产业升级的核心驱动力。同时在此背景驱动下,众多名企也纷纷在嵌入式人工智能领域布局
    发表于 02-26 10:17

    成都出台人工智能产业发展政策

     该政策中明确提到要构建人工智能算法创新体系和建立健全人工智能产业生态体系。在后者中,政策明确指出将加强公共数据集的建设,同时鼓励企业积极参
    的头像 发表于 01-24 14:35 699次阅读