0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谷歌人工智能部门DeepMind解决蛋白质折叠问题,运算时间数月缩短至数小时

工程师邓生 来源:网易科技 作者:网易科技 2020-12-01 09:34 次阅读

谷歌人工智能部门DeepMind在预测蛋白质结构方面迈出了一大步。公司表示,其已经解决了关键的“蛋白质折叠问题”,并将解决问题的运算时间从数月缩短至数小时,这有助于加快药物发现速度,有可能破解一个类似于绘制人类基因组的问题。

DeepMind开发的AlphaFold系统在最近结构预测关键评估(CASP)竞赛中所展现出的能力达到了“解决”问题的水平。该活动始于1994年,每两年举办一次,以加速这一课题的研究。

蛋白质的不同折叠程度决定了它如何与其他分子相互作用,了解蛋白质结构变化对发现新冠肺炎等病毒如何侵入人体细胞、设计酶分解污染物和提高作物产量具有重要意义。

DeepMind在2014年被谷歌收购,成为谷歌子公司。其开发的游戏人工智能广为人知。DeepMind所开发的人工智能系统能够通过自我训练,还在围棋比赛中击败了李世石等世界知名围棋选手。公司目标是开发可以应用于更广泛问题的人工智能,目前为止,DeepMind已经开发出的人工智能系统能够使谷歌的数据中心更加节能,通过扫描识别眼疾,并自动将文字生成语音。

DeepMind首席执行官杰米斯·哈萨比斯(Demis Hassabis)在电话采访中表示:“这些算法现在已经足够强大,强大到可以应用于解决科学问题。”“经过4年的发展,我们有了一个足够精确的系统,对生物学研究人员来说具有实际的生物学意义和相关性。”

哈萨比斯表示,DeepMind目前正在研究以“可扩展方式”为科学家提供访问AlphaFold系统的途径。

参与CASP的科学家们分析了大约100种蛋白质的氨基酸序列形状。参赛者被告知排列顺序,并负责预测蛋白质的形状。AlphaFold对其中三分之二蛋白质结构的评估与CASP的分析几乎完全一致,而其他团队的评估契合度约为10%。这也比DeepMind工具两年前首次参加CASP竞赛时的结果要好,当时竞赛中涉及43种蛋白质结构,DeepMind准确预测出其中的25种。

哈萨比斯说,他开发AlphaFold系统的灵感来自CASP试图找到未知蛋白质结构的尝试,比如Foldit就是以谜题的形式向业余志愿者展示问题。在最初的两年里,人类玩家被证明在解开谜题方面更具优势,最终还发现了一种让科学家们困惑不已的蛋白质结构,并就此设计了一种新的酶,后来在实验室得到了证实。欧洲生物信息学研究所(European Bioinformatics Institute)名誉主任珍妮特·桑顿(Janet Thornton)说:“确定单个蛋白质结构通常需要多年的实验努力。”桑顿是使用计算方法分析蛋白质结构的先驱之一。“更好地理解蛋白质结构、能够使用计算机预测它们意味着更好地理解生命进化历程,当然,也能够更好理解还有有关人类健康和疾病的诸多问题。”

责任编辑:PSY

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6173

    浏览量

    105641
  • 人工智能
    +关注

    关注

    1792

    文章

    47445

    浏览量

    239043
  • 蛋白质
    +关注

    关注

    0

    文章

    25

    浏览量

    7995
  • 折叠
    +关注

    关注

    0

    文章

    21

    浏览量

    8177
收藏 人收藏

    评论

    相关推荐

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    研究的进程。从蛋白质结构预测到基因测序与编辑,再到药物研发,人工智能技术在生命科学的各个层面都发挥着重要作用。特别是像AlphaFold这样的工具,成功解决了困扰生物学界半个多世纪的蛋白质折叠
    发表于 10-14 09:21

    AI实火!诺贝尔又把化学奖颁给AI大模型

    蛋白质结构预测大模型——AlphaFold系列。 今年5月9日,谷歌DeepMind重磅发布了AlphaFold-3,能够精准预测蛋白质-配体、
    的头像 发表于 10-10 10:38 242次阅读

    差示扫描量热仪测试蛋白质的应用案例

    过程中可能出现的吸热或放热峰,这些峰对应于角蛋白分子链的运动、微纤维的熔融、或蛋白质的变性等现象。    通过对比受延展和热处理前后的DSC曲线,研究人员可以了解这些处理对角蛋白复合物的热性质和结构稳定性的影响。例如,热处理可能
    的头像 发表于 10-09 15:45 237次阅读
    差示扫描量热仪测试<b class='flag-5'>蛋白质</b>的应用案例

    risc-v在人工智能图像处理应用前景分析

    时间运行或电池供电的设备尤为重要。 高性能 : 尽管RISC-V架构以低功耗著称,但其高性能也不容忽视。通过优化指令集和处理器设计,RISC-V可以在处理复杂的人工智能图像处理任务时表现出色。 三
    发表于 09-28 11:00

    人工智能ai 电 模电 模拟集成电路原理 电路分析

    人工智能ai 电 模电 模拟集成电路原理 电路分析 想问下哪些比较容易学 不过好像都是要学的
    发表于 09-26 15:24

    创客中国AIGC专题赛冠军天鹜科技:AI蛋白质设计引领者

    源自自然的蛋白质与现代科技的创新精神相结合,打造蛋白质设计与应用的新范式。”在江西南昌举办的第九届“创客中国”生成式人工智能(AIGC)中小企业创新创业大赛中,上海天鹜科技有限公司(下称“天鹜科技”)分享了这一理念。 天鹜科技是
    的头像 发表于 09-18 12:04 277次阅读
    创客中国AIGC专题赛冠军天鹜科技:AI<b class='flag-5'>蛋白质</b>设计引领者

    EvolutionaryScale推出基于NVIDIA GPU模型的新型蛋白质研究方案

    EvolutionaryScale 于 6 月 25 日发布了第三代 ESM 模型 ESM3,该模型可同时对蛋白质的序列、结构和功能进行推理,为蛋白质研发工程师提供了一个可编程的平台。
    的头像 发表于 08-23 16:45 690次阅读

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内蛋白质递送

    将小分子、核酸、蛋白质和药物导入细胞是监测和了解细胞行为以及生物功能的重要途径。
    的头像 发表于 05-28 10:11 617次阅读
    利用微流控探针诱导的化学质膜穿孔,实现单细胞胞内<b class='flag-5'>蛋白质</b>递送

    谷歌DeepMind发布人工智能模型AlphaFold最新版本

    谷歌DeepMind近日发布了人工智能模型AlphaFold的最新版本——AlphaFold 3,这一革命性的工具将在药物发现和疾病治疗领域发挥巨大作用。
    的头像 发表于 05-10 11:26 608次阅读

    洪亮团队在生信期刊JCIM发布最新成果,蛋白质工程迈入通用人工智能时代

    发表最新研究成果:“基于微环境感知图神经网络构建指导蛋白质定向进化的通用人工智能”(Protein Engineering with Lightweight Graph Denoising Neural
    的头像 发表于 04-19 17:42 584次阅读
    洪亮团队在生信期刊JCIM发布最新成果,<b class='flag-5'>蛋白质</b>工程迈入通用<b class='flag-5'>人工智能</b>时代

    谷歌DeepMind推出SIMI通用AI智能

    近日,谷歌DeepMind团队发布了其最新研究成果——SIMI(Scalable Instructable Multiworld Agent),这是一个通用人工智能智能体,能够在多种
    的头像 发表于 03-18 11:39 997次阅读

    天府锦城实验室在生物传感与蛋白质测序领域取得重要进展

    3月10日,记者从天府锦城实验室(未来医学城)获悉,四川大学华西医院临床检验医学研究中心与生物治疗全国重点实验室、天府锦城实验室(未来医学城)耿佳教授和华西第二医院陈路教授联合团队在生物传感与蛋白质测序领域取得重要进展。
    的头像 发表于 03-17 09:10 976次阅读
    天府锦城实验室在生物传感与<b class='flag-5'>蛋白质</b>测序领域取得重要进展

    嵌入式人工智能的就业方向有哪些?

    。 国内外科技巨头纷纷争先入局,在微软、谷歌、苹果、脸书等积极布局人工智能的同时,国内的BAT、华为、小米等科技公司也相继切入到嵌入式人工智能的赛道。那么嵌入式AI可就业的方向有哪些呢? 嵌入式AI开发
    发表于 02-26 10:17

    谷歌DeepMind科学家欲建AI初创公司

    据知情人士透露,谷歌人工智能部门DeepMind的两名杰出科学家Laurent Sifre和Karl Tuyls正在与投资者商讨在巴黎成立一家新的
    的头像 发表于 01-22 14:41 514次阅读