我国成功达到量子计算研究的第一个里程碑:量子计算优越性(国外也称之为“量子霸权”)。
来自中国科大的消息显示,中国科学技术大学潘建伟、陆朝阳等组成的研究团队与中科院上海微系统所、国家并行计算机工程技术研究中心合作,构建了76个光子的量子计算原型机“九章”,实现了具有实用前景的“高斯玻色取样”任务的快速求解。
根据现有理论,该量子计算系统处理高斯玻色取样的速度比目前最快的超级计算机快一百万亿倍,其速度比去年谷歌发布的53个超导比特量子计算原型机“悬铃木”快一百亿倍。
图片1:“九章”量子计算原型机光路系统原理图:左上方激光系统产生高峰值功率飞秒脉冲; 左方25个光源通过参量下转换过程产生50路单模压缩态输入到右方100模式光量子干涉网络; 最后利用100个高效率超导单光子探测器对干涉仪输出光量子态进行探测。(制图:陆朝阳,彭礼超)
这一重磅成果于今日凌晨在国际学术期刊《科学》在线发布,审稿人评价该工作是“一个最先进的实验”,“一个重大成就”。
据了解,量子计算机在原理上具有超快的并行计算能力,可望通过特定算法在一些具有重大社会和经济价值的问题方面相比经典计算机实现指数级别的加速,例如密码破译、大数据优化、材料设计、药物分析等方面。
当前,研制量子计算机已成为世界科技前沿的最大挑战之一,成为欧美各发达国家角逐的焦点。
潘建伟团队一直在光量子信息处理方面处于国际领先水平:2017年,该团队构建了世界首台超越早期经典计算机(ENIAC)的光量子计算原型机;2019年,团队进一步研制了确定性偏振、高纯度、高全同性和高效率的国际最高性能单光子源,实现了20光子输入60模式干涉线路的玻色取样,输出复杂度相当于48个量子比特的希尔伯特态空间,逼近了“量子计算优越性”。
近期,该团队通过自主研制成功构建了76个光子100个模式的高斯玻色取样量子计算原型机“九章”(命名为“九章”是为了纪念中国古代最早的数学专著《九章算术》)。
根据目前最优的经典算法,“九章”对于处理高斯玻色取样的速度,比目前世界排名第一的超级计算机“富岳”快一百万亿倍,比谷歌去年发布的53比特量子计算原型机“悬铃木”快一百亿倍。同时,“九章”还克服了谷歌53比特随机线路取样实验中量子优越性依赖于样本数量的漏洞。
据了解,“九章”输出量子态空间规模达到了1030(“悬铃木”输出量子态空间规模是1016,目前全世界的存储容量是1022)。
该成果牢固确立了我国在国际量子计算研究中的第一方阵地位,为未来实现可解决具有重大实用价值问题的规模化量子模拟机奠定了技术基础。此外,基于“九章号”量子计算原型机的高斯玻色取样算法在图论、机器学习、量子化学等领域具有潜在应用,将是后续发展的重要方向。
除此之外,上述项目受到了中国科学院、安徽省、科技部、上海市和基金委的支持。
对此成果,研究人员希望这能够激发更多的经典算法模拟方面的工作,也预计将来会有提升的空间。毕竟量子优越性实验并不是一个一蹴而就的工作,而是更快的经典算法和不断提升的量子计算硬件之间的竞争,但最终量子并行性会产生经典计算机无法企及的算力。相信这一幕的出现不会太远。
附:量子计算机研究的三个指标性发展阶段
1.发展具备50-100个量子比特的高精度专用量子计算机,对于一些超级计算机无法解决的高复杂度特定问题实现高效求解,实现计算科学中“量子计算优越性”的里程碑。
2.通过对规模化多体量子体系的精确制备、操控与探测,研制可相干操纵数百个量子比特的量子模拟机,用于解决若干超级计算机无法胜任的具有重大实用价值的问题(如量子化学、新材料设计、优化算法等)。
3.通过积累在专用量子计算与模拟机的研制过程中发展起来的各种技术,提高量子比特的操纵精度使之达到能超越量子计算苛刻的容错阈值(》99.9%),大幅度提高可集成的量子比特数目(百万量级),实现容错量子逻辑门,研制可编程的通用量子计算原型机。
责任编辑:gt
-
计算机
+关注
关注
19文章
7534浏览量
88510
发布评论请先 登录
相关推荐
评论