0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

云原生时代的Java,仍在受欢迎吗

如意 来源:腾讯网 作者:周志明 2020-12-07 14:35 次阅读

Java 诞生距今已有 25 年,但它仍然长期占据着“天下第一”编程语言的宝座。只是其统治地位并非坚不可摧,反倒可以说是危机四伏。云原生时代,Java 技术体系的许多前提假设都受到了挑战,目前已经有可预见的、足以威胁动摇其根基的潜在可能性正在酝酿。同时,像 Golang、Rust 这样的新生语言,以及 C、C++C#Python 等老对手也都对 Java 的市场份额虎视眈眈。面对危机,Java 正在尝试哪些变革?未来,Java 是会继续向前、再攀高峰,还是由盛转衰?在今天由极客邦科技举办的 QCon 全球软件开发大会 2020(深圳站)上,远光软件研究院院长、《深入理解 Java 虚拟机》系列书籍作者周志明发表了主题演讲《云原生时代的 Java》,以下内容为演讲整理。

今天,25岁的Java仍然是最具有统治力的编程语言,长期占据编程语言排行榜的首位,拥有一千二百万的庞大开发者群体,全世界有四百五十亿部物理设备使用着Java技术,同时,在云端数据中心的虚拟化环境里,还运行着超过两百五十亿个Java虚拟机的进程实例(数据来自Oracle的WebCast)。

以上这些数据是Java过去25年巨大成就的功勋佐证,更是Java技术体系维持自己“天下第一”编程语言的坚实壁垒。Java与其他语言竞争,底气从来不在于语法、类库有多么先进好用,而是来自它庞大的用户群和极其成熟的软件生态,这在朝夕之间难以撼动。然而,这个现在看起来仍然坚不可摧的Java帝国,其统治地位的稳固程度不仅没有高枕无忧,反而说是危机四伏也不为过。目前已经有了可预见的、足以威胁动摇其根基的潜在可能性正在酝酿,并随云原生时代而降临。

Java 的危机

Java与云原生的矛盾,来源于Java诞生之初,植入到它基因之中的一些基本的前提假设已经逐渐开始被动摇,甚至已经不再成立。

我举个例子,每一位Java的使用者都听说过“一次编写,到处运行”(Write Once, Run Anywhere)这句口号。20多年前,Java成熟之前,开发者如果希望程序在Linux、Solaris、Windows等不同平台,在x86、AMD64、SPARC、MIPS、ARM等不同指令集架构上都能正常运行,就必须针对每种组合,编译出对应的二进制发行包,或者索性直接分发源代码,由使用者在自己的平台上编译。

面对这个问题,Java通过语言层虚拟化的方式,令每一个Java应用都自动取得平台无关(Platform Independent)、架构中立(Architecture Neutral)的先天优势,让同一套程序格式得以在不同指令集架构、不同操作系统环境下都能运行且得到一致的结果,不仅方便了程序的分发,还避免了各种平台下内存模型、线程模型、字节序等底层细节差异对程序编写的干扰。在当年,Java的这种设计带有令人趋之若鹜的强大吸引力,直接开启了托管语言(Managed Language,如Java、.NET)的一段兴盛期。

面对相同的问题,今天的云原生选择以操作系统层虚拟化的方式,通过容器实现的不可变基础设施去解决。不可变基础设施这个概念出现得比云原生要早,原本是指该如何避免由于运维人员对服务器运行环境所做的持续的变更而导致的意想不到的副作用。但在云原生时代,它的内涵已不再局限于方便运维、程序升级和部署的手段,而是升华一种为向应用代码隐藏环境复杂性的手段,是分布式服务得以成为一种可普遍推广的普适架构风格的必要前提。

将程序连同它的运行环境一起封装到稳定的镜像里,现已是一种主流的应用程序分发方式。Docker同样提出过“一次构建,到处运行”(Build Once, Run Anywhere)的口号,尽管它只能提供环境兼容性和有局限的平台无关性(指系统内核功能以上的ABI兼容),且完全不可能支撑架构中立性,所以将“一次构建,到处运行”与“一次编写,到处运行”对立起来并不严谨恰当,但是无可否认,今天Java技术“一次编译,到处运行”的优势,已经被容器大幅度地削弱,不再是大多数服务端开发者技术选型的主要考虑因素了。

如果仅仅是优势的削弱,并不足以成为Java的直接威胁,充其量只是一个潜在的不利因素,但更加迫在眉睫的风险来自于那些与技术潮流直接冲突的假设。譬如,Java总体上是面向大规模、长时间的服务端应用而设计的,严(luō)谨(suō)的语法利于约束所有人写出较一致的代码;静态类型动态链接的语言结构,利于多人协作开发,让软件触及更大规模;即时编译器、性能制导优化、垃圾收集子系统等Java最具代表性的技术特征,都是为了便于长时间运行的程序能享受到硬件规模发展的红利。

另一方面,在微服务的背景下,提倡服务围绕业务能力而非技术来构建应用,不再追求实现上的一致,一个系统由不同语言,不同技术框架所实现的服务来组成是完全合理的;服务化拆分后,很可能单个微服务不再需要再面对数十、数百GB乃至TB的内存;有了高可用的服务集群,也无须追求单个服务要7×24小时不可间断地运行,它们随时可以中断和更新。

同时,微服务又对应用的容器化亲和性,譬如镜像体积、内存消耗、启动速度,以及达到最高性能的时间等方面提出了新的要求。这两年的网红概念Serverless也进一步增加这些因素的考虑权重,而这些却正好都是Java的弱项:哪怕再小的Java程序也要带着完整的虚拟机和标准类库,使得镜像拉取和容器创建效率降低,进而使整个容器生命周期拉长。基于Java虚拟机的执行机制,使得任何Java的程序都会有固定的基础内存开销,以及固定的启动时间,而且Java生态中广泛采用的依赖注入进一步将启动时间拉长,使得容器的冷启动时间很难缩短。

软件工业中已经出现过不止一起因Java这些弱点而导致失败的案例,如JRuby编写的Logstash,原本是同时承担部署在节点上的收集端(Shipper)和专门转换处理的服务端(Master)的职责,后来因为资源占用的原因,被Elstaic.co用Golang的Filebeat代替了Shipper部分的职能;又如Scala语言编写的边车代理Linkerd,作为服务网格概念的提出者,却最终被Envoy所取代,其主要弱点之一也是由于Java虚拟机的资源消耗所带来的劣势。

虽然在云原生时代依然有很多适合Java发挥的领域,但是具备弹性与韧性、随时可以中断重启的微型服务的确已经形成了一股潮流,在逐步蚕食大型系统的领地。正是由于潮流趋势的改变,新一代的语言与技术尤其重视轻量化和快速响应能力,大多又重新回归到了原生语言(Native Language,如Golang、Rust)之上。

Java 的变革

面对挑战,Java的开发者和社区都没有退缩,它们在各自的领域给出了很多优秀的解决方案,涌现了如Quarkus、Micronaut、Helidon等一大批以提升Java在云原生环境下的适应性为卖点的框架。

不过,今天我们的主题将聚焦在由Java官方本身所推进的项目上。在围绕Java 25周年的研讨和布道活动中,官方的设定是以“面向未来的变革”(Innovating for the Future)为基调,你有可能在此之前已经听说过其中某个(某些)项目的名字和改进点,但这里我们不仅关心这些项目改进的是什么,还更关心它们背后的动机与困难、带来的收益,以及要付出的代价。

Innovating for the Future

Project Leyden

对于原生语言的挑战,最有力最彻底的反击手段无疑是将字节码直接编译成可以脱离Java虚拟机的原生代码。如果真的能够生成脱离Java虚拟机运行的原生程序,将意味着启动时间长的问题能够彻底解决,因为此时已经不存在初始化虚拟机和类加载的过程;也意味着程序马上就能达到最佳的性能,因为此时已经不存在即时编译器运行时编译,所有代码都是在编译期编译和优化好的(如下图所示);没有了Java虚拟机、即时编译器这些额外的部件,也就意味着能够省去它们原本消耗的那部分内存资源与镜像体积。

Java Performance Matrices(图片来源)

但同时,这也是风险系数最高、实现难度最大的方案。

Java并非没有尝试走过这条路,从Java 2之前的GCJ(GNU Compiler for Java),到后来的Excelsior JET,再到2018年Oracle Labs启动的GraalVM中的SubstrateVM模块,最后到2020年中期刚建立的Leyden项目,都在朝着提前编译(Ahead-of-Time Compilation,AOT)生成原生程序这个目标迈进。

Java支持提前编译最大的困难在于它是一门动态链接的语言,它假设程序的代码空间是开放的(Open World),允许在程序的任何时候通过类加载器去加载新的类,作为程序的一部分运行。要进行提前编译,就必须放弃这部分动态性,假设程序的代码空间是封闭的(Closed World),所有要运行的代码都必须在编译期全部可知。这一点不仅仅影响到了类加载器的正常运作,除了无法再动态加载外,反射(通过反射可以调用在编译期不可知的方法)、动态代理、字节码生成库(如CGLib)等一切会运行时产生新代码的功能都不再可用,如果将这些基础能力直接抽离掉,Helloworld还是能跑起来,但Spring肯定跑不起来,Hibernate也跑不起来,大部分的生产力工具都跑不起来,整个Java生态中绝大多数上层建筑都会轰然崩塌。

要获得有实用价值的提前编译能力,只有依靠提前编译器、组件类库和开发者三方一起协同才可能办到。由于Leyden刚刚开始,几乎没有公开的资料,所以下面我是以SubstrateVM为目标对象进行的介绍:

有一些功能,像反射这样的基础特性是不可能妥协的,折衷的解决办法是由用户在编译期,以配置文件或者编译器参数的形式,明确告知编译器程序代码中有哪些方法是只通过反射来访问的,编译器将方法的添加到静态编译的范畴之中。同理,所有使用到动态代理的地方,也必须在事先列明,在编译期就将动态代理的字节码全部生成出来。其他所有无法通过程序指针分析(Points-To Analysis)得到的信息,譬如程序中用到的资源、配置文件等等,也必须照此处理。

另一些功能,如动态生成字节码也十分常用,但用户自己往往无法得知那些动态字节码的具体信息,就只能由用到CGLib、javassist等库的程序去妥协放弃。在Java世界中也许最典型的场景就是Spring用CGLib来进行类增强,默认情况下,每一个Spring管理的Bean都要用到CGLib。从Spring Framework 5.2开始增加了@proxyBeanMethods注解来排除对CGLib的依赖,仅使用标准的动态代理去增强类。

2019年起,Pivotal的Spring团队与Oracle Labs的GraalVM团队共同孵化了Spring GraalVM Native项目,这个目前仍处于Experimental / Alpha状态的项目,能够让程序先以传统方式运行(启动)一次,自动化地找出程序中的反射、动态代理的代码,代替用户向编译器提供绝大部分所需的信息,并能将允许启动时初始化的Bean在编译期就完成初始化,直接绕过Spring程序启动最慢的阶段。这样从启动到程序可以提供服务,耗时竟能够低于0.1秒。

Spring Boot Startup Time(数据来源)

以原生方式运行后,缩短启动时间的效果立竿见影,一般会有数十倍甚至更高的改善,程序容量和内存消耗也有一定程度的下降。不过至少目前而言,程序的运行效率还是要弱于传统基于Java虚拟机的方式,虽然即时编译器有编译时间的压力,但由于可以进行基于假设的激进优化和运行时性能度量的制导优化,使得即时编译器的效果仍要优于提前编译器,这方面需要GraalVM编译器团队的进一步努力,也需要从语言改进上入手,让Java变得更适合被编译器优化。

Project Valhalla

Java语言上可感知的语法变化,多数来自于Amber项目,它的项目目标是持续优化语言生产力,近期(JDK 15、16)会有很多来自这个项目的特性,如Records、Sealed Class、Pattern Matching、Raw String Literals等实装到生产环境。

然而语法不仅与编码效率相关,与运行效率也有很大关系。“程序=代码+数据”这个提法至少在衡量运行效率上是合适的,无论是托管语言还是原生语言,最终产物都是处理器执行的指令流和内存存储的数据结构。Java、.NET、C、C++、Golang、Rust等各种语言谁更快,取决于特定场景下,编译器生成指令流的优化效果,以及数据在内存中的结构布局。

Java即时编译器的优化效果拔群,但是由于Java“一切皆为对象”的前提假设,导致在处理一系列不同类型的小对象时,内存访问性能非常拉垮,这点是Java在游戏、图形处理等领域一直难有建树的重要制约因素,也是Java建立Valhalla项目的目标初衷。

这里举个例子来说明此问题,如果我想描述空间里面若干条线段的集合,在Java中定义的代码会是这样的:

面向对象的内存布局中,对象标识符(Object Identity)存在的目的是为了允许在不暴露对象结构的前提下,依然可以引用其属性与行为,这是面向对象编程中多态性的基础。在Java中堆内存分配和回收、空值判断、引用比较、同步锁等一系列功能都会涉及到对象标识符,内存访问也是依靠对象标识符来进行链式处理的,譬如上面代码中的“若干条线段的集合”,在堆内存中将构成如下图的引用关系:

Object Identity / Memory Layout

计算机硬件经过25年的发展,内存与处理器虽然都在进步,但是内存延迟与处理器执行性能之间的冯诺依曼瓶颈(Von Neumann Bottleneck)不仅没有缩减,反而还在持续加大,“RAM Is the New Disk”已经从嘲讽梗逐渐成为了现实。

一次内存访问(将主内存数据调入处理器Cache)大约需要耗费数百个时钟周期,而大部分简单指令的执行只需要一个时钟周期而已。因此,在程序执行性能这个问题上,如果编译器能减少一次内存访问,可能比优化掉几十、几百条其他指令都来得更有效果。

额外知识:冯诺依曼瓶颈

不同处理器(现代处理器都集成了内存管理器,以前是在北桥芯片中)的内存延迟大概是40-80纳秒(ns,十亿分之一秒),而根据不同的时钟频率,一个时钟周期大概在0.2-0.4纳秒之间,如此短暂的时间内,即使真空中传播的光,也仅仅能够行进10厘米左右。

数据存储与处理器执行的速度矛盾是冯诺依曼架构的主要局限性之一,1977年的图灵奖得主John Backus提出了“冯诺依曼瓶颈”这个概念,专门用来描述这种局限性。

编译器的确在努力减少内存访问,从JDK 6起,HotSpot的即时编译器就尝试通过逃逸分析来做标量替换(Scalar Replacement)和栈上分配(Stack Allocations)优化,基本原理是如果能通过分析,得知一个对象不会传递到方法之外,那就不需要真实地在对中创建完整的对象布局,完全可以绕过对象标识符,将它拆散为基本的原生数据类型来创建,甚至是直接在栈内存中分配空间(HotSpot并没有这样做),方法执行完毕后随着栈帧一起销毁掉。

不过,逃逸分析是一种过程间优化(Interprocedural Optimization),非常耗时,也很难处理那些理论有可能但实际不存在的情况。相同的问题在C、C++中却并不存在,上面场景中,程序员只要将Point和Line都定义为struct即可,C#中也有struct,是依靠.NET的值类型(Value Type)来实现的。Valhalla项目的核心改进就是提供类似的值类型支持,提供一个新的关键字(inline),让用户可以在不需要向方法外部暴露对象、不需要多态性支持、不需要将对象用作同步锁的场合中,将类标识为值类型,此时编译器就能够绕过对象标识符,以平坦的、紧凑的方式去为对象分配内存。

有了值类型的支持后,现在Java泛型中令人诟病的不支持原数据类型(Primitive Type)、频繁装箱问题也就随之迎刃而解,现在Java的包装类,理所当然地会以代表原生类型的值类型来重新定义,这样Java泛型的性能会得到明显的提升,因为此时Integer与int的访问,在机器层面看完全可以达到一致的效率。

Project Loom

Java语言抽象出来隐藏了各种操作系统线程差异性的统一线程接口,这曾经是它区别于其他编程语言(C/C++表示有被冒犯到)的一大优势,不过,统一的线程模型不见得永远都是正确的。

Java目前主流的线程模型是直接映射到操作系统内核上的1:1模型,这对于计算密集型任务这很合适,既不用自己去做调度,也利于一条线程跑满整个处理器核心。但对于I/O密集型任务,譬如访问磁盘、访问数据库占主要时间的任务,这种模型就显得成本高昂,主要在于内存消耗和上下文切换上:64位Linux上HotSpot的线程栈容量默认是1MB,线程的内核元数据(Kernel Metadata)还要额外消耗2-16KB内存,所以单个虚拟机的最大线程数量一般只会设置到200至400条,当程序员把数以百万计的请求往线程池里面灌时,系统即便能处理得过来,其中的切换损耗也相当可观。

Loom项目的目标是让Java支持额外的N:M线程模型,请注意是“额外支持”,而不是像当年从绿色线程过渡到内核线程那样的直接替换,也不是像Solaris平台的HotSpot虚拟机那样通过参数让用户二选其一。

Loom项目新增加一种“虚拟线程”(Virtual Thread,以前以Fiber为名进行宣传过,但因为要频繁解释啥是Fiber所以现在放弃了),本质上它是一种有栈协程(Stackful Coroutine),多条虚拟线程可以映射到同一条物理线程之中,在用户空间中自行调度,每条虚拟线程的栈容量也可由用户自行决定。

Virtual Thread

同时,Loom项目的另一个目标是要尽最大可能保持原有统一线程模型的交互方式,通俗地说就是原有的Thread、J.U.C、NIO、Executor、Future、ForkJoinPool等这些多线程工具都应该能以同样的方式支持新的虚拟线程,原来多线程中你理解的概念、编码习惯大多数都能够继续沿用。

为此,虚拟线程将会与物理线程一样使用java.lang.Thread来进行抽象,只是在创建线程时用到的参数或者方法稍有不同(譬如给Thread增加一个Thread.VIRTUAL_THREAD参数,或者增加一个startVirtualThread()方法)。这样现有的多线程代码迁移到虚拟线程中的成本就会变得很低,而代价就是Loom的团队必须做更多的工作以保证虚拟线程在大部分涉及到多线程的标准API中都能够兼容,甚至在调试器上虚拟线程与物理线程看起来都会有一致的外观。但很难全部都支持,譬如调用JNI的本地栈帧就很难放到虚拟线程上,所以一旦遇到本地方法,虚拟线程就会被绑定(Pinned)到一条物理线程上。

Loom的另一个重点改进是支持结构化并发(Structured Concurrency),这是2016年才提出的新的并发编程概念,但很快就被诸多编程语言所吸纳。它是指程序的并发行为会与代码的结构对齐,譬如以下代码所示,按照传统的编程观念,如果没有额外的处理(譬如无中生有地弄一个await关键字),那在task1和task2提交之后,程序应该继续向下执行:

但是在结构化并发的支持下,只有两个并行启动的任务线程都结束之后,程序才会继续向下执行,很好地以同步的编码风格,来解决异步的执行问题。事实上,“Code like sync,Work like async”正是Loom简化并发编程的核心理念。

Project Portola

Portola项目的目标是将OpenJDK向Alpine Linux移植。Alpine Linux是许多Docker容器首选的基础镜像,因为它只有5 MB大小,比起其他Cent OS、Debain等动辄一百多MB的发行版来说,更适合用于容器环境。不过Alpine Linux为了尽量瘦身,默认是用musl作为C标准库的,而非传统的glibc(GNU C library),因此要以Alpine Linux为基础制作OpenJDK镜像,必须先安装glibc,此时基础镜像大约有12 MB。Portola计划将OpenJDK的上游代码移植到musl,并通过兼容性测试。使用Portola制作的标准Java SE 13镜像仅有41 MB,不仅远低于Cent OS的OpenJDK(大约396 MB),也要比官方的slim版(约200 MB)要小得多。

Java 的未来

云原生时代,Java技术体系的许多前提假设都受到了挑战,“一次编译,到处运行”、“面向长时间大规模程序而设计”、“从开放的代码空间中动态加载”、“一切皆为对象”、“统一线程模型”,等等。技术发展迭代不会停歇,没有必要坚持什么“永恒的真理”,旧的原则被打破,只要合理,便是创新。

Java语言意识到了挑战,也意识到了要面向未来而变革。文中提到的这些项目,Amber和Portola已经明确会在2021年3月的Java 16中发布,至少也会达到Feature Preview的程度:

JEP 394:Pattern Matching for instanceof

JEP 395:Records

JEP 397:Sealed Classes

JEP 386:Alpine Linux Port

至于更受关注,同时也是难度更高的 Valhalla 和 Loom 项目,目前仍然没有明确的版本计划信息,尽管它们已经开发了数年时间,非常希望能够赶在 Java 17 这个 LTS 版本中面世,但前路还是困难重重。

至于难度最高、创建时间最晚的 Leyden 项目,目前还完全处于特性讨论阶段,连个胚胎都算不上。对于 Java 的原生编译,我们中短期内只可能寄希望于 Oracle 的 GraalVM。

未来一段时间,是Java重要的转型窗口期,如果作为下一个LTS版的Java 17,能够成功集Amber、Portola、Valhalla、Loom和Panama(用于外部函数接口访问,本文没有提到)的新能力、新特性于一身,GraalVM也能给予足够强力支持的话,那Java 17 LTS大概率会是一个里程碑式的版本,带领着整个Java生态从大规模服务端应用,向新的云原生时代软件系统转型。可能成为比肩当年从面向嵌入式设备与浏览器Web Applets的Java 1,到确立现代Java语言方向(Java SE/EE/ME和JavaCard)雏形的Java 2转型那样的里程碑。

但是,如果Java不能加速自己的发展步伐,那由强大生态所构建的护城河终究会消耗殆尽,被Golang、Rust这样的新生语言,以及C、C++、C#、Python等老对手蚕食掉很大一部分市场份额,以至被迫从“天下第一”编程语言的宝座中退位。

Java的未来是继续向前,再攀高峰,还是由盛转衰,锋芒挫缩,你我拭目以待。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • JAVA
    +关注

    关注

    19

    文章

    2967

    浏览量

    104750
  • 编程
    +关注

    关注

    88

    文章

    3616

    浏览量

    93732
  • 云原生
    +关注

    关注

    0

    文章

    249

    浏览量

    7950
收藏 人收藏

    评论

    相关推荐

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器学习平台种类繁多,功能各异,如何选择云原生机器学习平台呢?下面,AI部落小编带您探讨。
    的头像 发表于 12-25 11:54 89次阅读

    构建云原生机器学习平台流程

    构建云原生机器学习平台是一个复杂而系统的过程,涉及数据收集、处理、特征提取、模型训练、评估、部署和监控等多个环节。
    的头像 发表于 12-14 10:34 128次阅读

    什么是云原生MLOps平台

    云原生MLOps平台,是指利用云计算的基础设施和开发工具,来构建、部署和管理机器学习模型的全生命周期的平台。以下,是对云原生MLOps平台的介绍,由AI部落小编整理。
    的头像 发表于 12-12 13:13 103次阅读

    梯度科技入选2024云原生企业TOP50榜单

    近日,国内专业咨询机构DBC德本咨询发布“2024云原生企业TOP50”榜单。梯度科技凭借自主研发的“梯度智能云平台”入选该榜单,彰显公司在该领域的行业竞争力。
    的头像 发表于 12-06 11:35 268次阅读

    软通动力荣登2024云原生企业TOP50榜单

    近日,DBC德本咨询发布“2024云原生企业TOP50”榜单,软通动力凭借自研的“天鹤云原生数据库平台” 荣登该榜单第8名,彰显了公司在该领域的行业竞争力。
    的头像 发表于 12-04 11:27 232次阅读

    云原生和数据库哪个好一些?

    云原生和数据库哪个好一些?云原生和数据库各有其独特的优势,适用于不同的场景。云原生强调高效资源利用、快速开发部署和高可伸缩性,适合需要高度灵活性和快速迭代的应用。而数据库则注重数据一致性、共享和独立性,确保数据的稳定和安全,适用
    的头像 发表于 11-29 10:07 140次阅读

    k8s微服务架构就是云原生吗?两者是什么关系

    k8s微服务架构就是云原生吗?K8s微服务架构并不等同于云原生,但两者之间存在密切的联系。Kubernetes在云原生架构中扮演着核心组件的角色,它简化了容器化应用程序的管理,提供了弹性、自动化
    的头像 发表于 11-25 09:39 145次阅读

    云原生和非云原生哪个好?六大区别详细对比

    云原生和非云原生各有优劣,具体选择取决于应用场景。云原生利用云计算的优势,通过微服务、容器化和自动化运维等技术,提高了应用的可扩展性、更新速度和成本效益。非云原生则可能更适合对延迟敏感
    的头像 发表于 09-13 09:53 391次阅读

    基于Arm架构的Azure虚拟机助力云原生应用开发

    子系统 (CSS) 所构建的解决方案专为运行现代通用云工作负载而设计,并且通过优化,为云原生产品提供更高的效率和性能。
    的头像 发表于 09-05 15:54 1807次阅读

    中科驭数分析DPU在云原生网络与智算网络中的实际应用

    CCF Chip 2024,精彩不能停!7月21日下午,中科驭数在第二届中国计算机学会(CCF)芯片大会的“驭数专属时刻”仍在继续,驭数组织承办“DPU技术趋势和应用——DPU在云原生与智算网络中
    的头像 发表于 08-02 11:21 709次阅读

    京东云原生安全产品重磅发布

    “安全产品那么多,我怎么知道防住了?”“大家都说自己是云原生的,我看都是换汤不换药”在与客户沟通云原生安全方案的时候,经常会遇到这样的吐槽。越来越的客户已经开始了云原生化的技术架构改造,也意识到
    的头像 发表于 07-26 10:36 479次阅读
    京东<b class='flag-5'>云原生</b>安全产品重磅发布

    从积木式到装配式云原生安全

    云原生安全风险 随着云原生架构的快速发展,核心能力逐渐稳定,安全问题日趋紧急。在云原生安全领域不但有新技术带来的新风险,传统IT基础设施下的安全威胁也依然存在。要想做好云原生安全,就要
    的头像 发表于 07-26 10:35 306次阅读
    从积木式到装配式<b class='flag-5'>云原生</b>安全

    基于DPU与SmartNic的云原生SDN解决方案

    个轻量级,可移植的运行环境,逐渐成为云原生时代基础设施的事实标准。Kubernetes通过网络插件(CNI,Container Network Interface)实现灵活地配置和管理集群中的容器网络,确保容器之间的有效通信和网络安全。
    的头像 发表于 07-22 11:44 698次阅读
    基于DPU与SmartNic的<b class='flag-5'>云原生</b>SDN解决方案

    云原生是大模型“降本增效”的解药吗?

    云原生AI正当时
    的头像 发表于 02-20 09:31 392次阅读

    米哈游大数据云原生实践

    近年来,容器、微服务、Kubernetes 等各项云原生技术的日渐成熟,越来越多的公司开始选择拥抱云原生,并开始将 AI、大数据等类型的企业应用部署运行在云原生之上。以 Spark 为例,在云上运行
    的头像 发表于 01-09 10:41 586次阅读
    米哈游大数据<b class='flag-5'>云原生</b>实践