0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

还能这样?把 Python 自动翻译成 C++

电子设计 来源:电子设计 作者:电子设计 2020-12-10 18:29 次阅读

本文主要介绍在机器学习模型部署过程中,怎么样快速得将python转为C++
来源:腾讯技术工程微信号
作者:byronhe,腾讯 WXG 开发工程师

一、问题背景

随着深度学习的广泛应用,在搜索引擎/推荐系统/机器视觉等业务系统中,越来越多的深度学习模型部署到线上服务。

机器学习模型在离线训练时,一般要将输入的数据做特征工程预处理,再输入模型在 TensorFlow PyTorch 等框架上做训练。

1.常见的特征工程逻辑

常见的特征工程逻辑有:

分箱/分桶 离散化

log/exp 对数/幂等 math numpy 常见数学运算

特征缩放/归一化/截断

交叉特征生成

分词匹配程度计算

字符串分隔匹配判断 tong

缺省值填充等

数据平滑

onehot 编码,hash 编码等

这些特征工程代码,当然一般使用深度学习最主要的语言 python 实现。

二、业务痛点

离线训练完成,模型上线部署后,同样要用 C++ 重新实现 这些 python 的特征工程逻辑代码。

我们发现,“用 C++ 重新实现” 这个步骤,给实际业务带来了大量的问题:

繁琐,费时费力,极容易出现 python 和 C++ 代码不一致

不一致会直接影响模型在线上的效果,导致大盘业务指标不如预期,产生各种 bad case

不一致难以发现,无法测试,无法监控,经常要靠用户投诉反馈,甚至大盘数据异常才能发现

1. 业界方案

针对这些问题,我调研了这些业界方案:

《推荐系统中模型训练及使用流程的标准化》

《自主研发、不断总结经验,美团搜索推荐机器学习平台》

《京东电商推荐系统实践》

“模型线上线下一致性问题对于模型效果非常重要,我们使用特征日志来实时记录特征,保证特征的一致性。这样离线处理的时候会把实时的用户反馈,和特征日志做一个结合生成训练样本,然后更新到模型训练平台上,平台更新之后在推送到线上,这样整个排序形成了一个闭环。”

总结起来,有几种思路:

在线特征存储起来给离线用

在线 C++ 代码编译成 so 导出给离线用

根据一份配置生成离线和在线代码

提取公共代码,加强代码复用,等软件工程手段,减少不一致

2. 自动翻译方案

(1) .已有方案的缺点

但这些思路都有各种缺点:

所有在线请求的所有特征,这个存储量数据量很大

算法改代码需要等待后台开发,降低了算法同学的工作效率

特征处理代码的复杂度转移到配置文件中,不一定能充分表达,而且配置格式增加学习成本

就这边真实离线特征处理代码来看,大部分代码都无法抽取出公共代码做复用。

(2). 翻译器

回到问题出发点考虑,显而易见,这个问题归根结底就是需要一个 “ python 到 c++ 的翻译器 ” 。

那其实 “翻译器 Transpiler ” ,和编译器解释器类似,也是个古老的热门话题了,比如 WebAssembly, CoffeeScript ,Babel ,
Google Closure Compiler,f2c

于是一番搜索,发现 python 到 C++ 的翻译器也不少,其中 Pythran 是新兴比较热门的开源项目。

于是一番尝试后,借助 pythran,我们实现了:

一条命令 全自动把 Python 翻译成等价 C++

严格等价保证改写,彻底消除不一致

完全去掉重新实现 这块工作量,后台开发成本降到 0 ,彻底解放生产力

算法同学继续使用纯 python,开发效率无影响, 无学习成本

并能推广到其他需要 python 改写成后台 C++ 代码 的业务场景,解放生产力

三、pythran 的使用流程

(1). 安装

一条命令安装:

pip3 install pythran

(2). 写 Python 代码

下面这个 python demo,是 pythran 官方 demo

import math
import numpy as np

def zero(n, m):
    return [[0]*n for col in range(m)]

#pythran export matrix_multiply(float list list, float list list)
def matrix_multiply(m0, m1):
    new_matrix = zero(len(m0),len(m1[0]))
    for i in range(len(m0)):
        for j in range(len(m1[0])):
            for k in range(len(m1)):
                new_matrix[i][j] += m0[i][k]*m1[k][j]
    return new_matrix

#pythran export arc_distance(float[], float[], float[], float[])
def arc_distance(theta_1, phi_1, theta_2, phi_2):
    """
    Calculates the pairwise arc distance
    between all points in vector a and b.
    """
    temp = (np.sin((theta_2-theta_1)/2)**2
           + np.cos(theta_1)*np.cos(theta_2) * np.sin((phi_2-phi_1)/2)**2)
    distance_matrix = 2 * np.arctan2(np.sqrt(temp), np.sqrt(1-temp))
    return distance_matrix


#pythran export dprod(int list, int list)
def dprod(l0,l1):
    """WoW, generator expression, zip and sum."""
    return sum(x * y for x, y in zip(l0, l1))


#pythran export get_age(int )
def get_age(age):
    if age <= 20:
        age_x = '0_20'
    elif age <= 25:
        age_x = '21_25'
    elif age <= 30:
        age_x = '26_30'
    elif age <= 35:
        age_x = '31_35'
    elif age <= 40:
        age_x = '36_40'
    elif age <= 45:
        age_x = '41_45'
    elif age <= 50:
        age_x = '46_50'
    else:
        age_x = '50+'
    return age_x

(3). Python 转成 C++

一条命令完成翻译

pythran -e demo.py -o  demo.hpp

(4). 写 C++ 代码调用

pythran/pythonic/ 目录下是 python 标准库的 C++ 等价实现,翻译出来的 C++ 代码需要 include 这些头文件

写个 C++ 代码调用

#include "demo.hpp"
#include "pythonic/numpy/random/rand.hpp"
#include 

using std::cout;
using std::endl;

int main() {
  pythonic::types::list> m0 = {{2.0, 3.0},
                                                             {4.0, 5.0}},
                                                       m1 = {{1.0, 2.0},
                                                             {3.0, 4.0}};
  cout << m0 << "*" << m1 << "/n=/n"
       << __pythran_demo::matrix_multiply()(m0, m1) << endl
       << endl;

  auto theta_1 = pythonic::numpy::random::rand(3),
       phi_1 = pythonic::numpy::random::rand(3),
       theta_2 = pythonic::numpy::random::rand(3),
       phi_2 = pythonic::numpy::random::rand(3);
  cout << "arc_distance " << theta_1 << "," << phi_1 << "," << theta_2 << ","
       << phi_2 << "/n=/n"
       << __pythran_demo::arc_distance()(theta_1, phi_1, theta_2, phi_2) << endl
       << endl;

  pythonic::types::list l0 = {2, 3}, l1 = {4, 5};
  cout << "dprod " << l0 << "," << l1 << "/n=/n"
       << __pythran_demo::dprod()(l0, l1) << endl
       << endl;

  cout << "get_age 30 = " << __pythran_demo::get_age()(30) << endl << endl;

  return 0;
}

(5). 编译运行

g++ -g -std=c++11 main.cpp -fopenmp -march=native -DUSE_XSIMD -I /usr/local/lib/python3.6/site-packages/pythran/ -o pythran_demo


./pythran_demo

四、pythran 的功能与特性

(1). 介绍

按官方定义,Pythran 是一个 AOT (Ahead-Of-Time - 预先编译) 编译器。给科学计算的 python 加注解后,pythran 可以把 python 代码变成接口相同的原生 python 模块,大幅度提升性能。

并且 pythran 也可以利用 OpenMP 多核和 SIMD 指令集。

支持 python 3 和 Python 2.7 。

pythran 的 manual 挺详细:
https://pythran.readthedocs.io/en/latest/MANUAL.html

(2). 功能

pythran 并不支持完整的 python, 只支持 python 语言特性的一个子集:

polymorphic functions 多态函数(翻译成 C++ 的泛型模板函数)

lambda

list comprehension 列表推导式

map, reduce 等函数

dictionary, set, list 等数据结构

exceptions 异常

file handling 文件处理

部分 numpy

不支持的功能:

classes 类

polymorphic variables 可变类型变量

(3). 支持的数据类型和函数

pythran export 可以导出函数和全局变量。
支持导出的数据类型,BNF 定义是:

  argument_type = basic_type
                  | (argument_type+)    # this is a tuple
                  | argument_type list    # this is a list
                  | argument_type set    # this is a set
                  | argument_type []+    # this is a ndarray, C-style
                  | argument_type [::]+    # this is a strided ndarray
                  | argument_type [:,...,:]+ # this is a ndarray, Cython style
                  | argument_type [:,...,3]+ # this is a ndarray, some dimension fixed
                  | argument_type:argument_type dict    # this is a dictionary

    basic_type = bool | byte | int | float | str | None | slice
               | uint8 | uint16 | uint32 | uint64 | uintp
               | int8 | int16 | int32 | int64 | intp
               | float32 | float64 | float128
               | complex64 | complex128 | complex256

可以看到基础类型相当全面,支持各种 整数,浮点数,字符串,复数

复合类型支持 tuple, list, set, dict, numpy.ndarray 等,

对应 C++ 代码的类型实现在 pythran/pythonic/include/types/ 下面,可以看到比如 dict 实际就是封装了一下 std::unordered_map
https://pythran.readthedocs.i...
可以看到支持的 python 基础库,其中常用于机器学习的 numpy 支持算比较完善。

五、pythran 的基本原理

和常见的编译器/解释器类似, pythran 的架构是分成 3 层:

python 代码解析成抽象语法树 AST 。用 python 标准库自带的的 ast 模块实现

代码优化。

在 AST 上做优化,有多种 transformation pass,比如 deadcode_elimination 死代码消除,loop_full_unrolling 循环展开 等。还有 Function/Module/Node 级别的 Analysis,用来遍历 AST 供 transformation 利用。

后端,实现代码生成。目前有 2 个后端,Cxx / Python, Cxx 后端可以把 AST 转成 C++ 代码( Python 后端用来调试)。

目前看起来 ,pythran 还欠缺的:

字符串处理能力欠缺,缺少 str.encode()/str.decode() 对 utf8 的支持

缺少正则表达式 regex 支持

看文档要自己加也不麻烦,看业务需要可以加。

审核编辑 黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46915

    浏览量

    237739
  • C++
    C++
    +关注

    关注

    22

    文章

    2105

    浏览量

    73518
  • 机器学习
    +关注

    关注

    66

    文章

    8382

    浏览量

    132458
  • python
    +关注

    关注

    56

    文章

    4784

    浏览量

    84493
收藏 人收藏

    评论

    相关推荐

    同样是函数,在CC++中有什么区别

    ,即使没有数据返回,也得写 void。 第二个函数名。 C语言的函数名绝对不能重名,除了用上 weak 这样的黑科技。同一个项目中,函数重名就会提示重复定义。 C++因为函数重载的存在,函数名可以相同,只要参数有区别就行。这两个
    的头像 发表于 11-29 10:25 129次阅读

    C语言和C++中结构体的区别

    同样是结构体,看看在C语言和C++中有什么区别?
    的头像 发表于 10-30 15:11 156次阅读

    C7000优化C/C++编译器

    电子发烧友网站提供《C7000优化C/C++编译器.pdf》资料免费下载
    发表于 10-30 09:45 0次下载
    <b class='flag-5'>C</b>7000优化<b class='flag-5'>C</b>/<b class='flag-5'>C++</b>编译器

    使用OpenVINO GenAI API在C++中构建AI应用程序

    许多桌面应用程序是使用 C++ 开发的,而将生成式AI(GenAI)功能集成到这些应用程序中可能会很具有挑战性,尤其是因为使用像 Hugging Face 这样Python 库的复杂性。C
    的头像 发表于 10-12 09:36 321次阅读
    使用OpenVINO GenAI API在<b class='flag-5'>C++</b>中构建AI应用程序

    OpenVINO2024 C++推理使用技巧

    很多人都使用OpenVINO新版的C++ 或者Python的SDK,都觉得非常好用,OpenVINO2022之后的版本C++ SDK做了大量的优化与整理,已经是非常贴近开发的使用习惯与推理方式。与OpenCV的Mat对象对接方式
    的头像 发表于 07-26 09:20 807次阅读

    C++语言基础知识

    电子发烧友网站提供《C++语言基础知识.pdf》资料免费下载
    发表于 07-19 10:58 7次下载

    C++中实现类似instanceof的方法

    C++有多态与继承,但是很多人开始学习C++,有时候会面临一个常见问题,就是如何向下转型,特别是不知道具体类型的时候,这个时候就希望C++ 可以向Java或者Python中有insta
    的头像 发表于 07-18 10:16 543次阅读
    <b class='flag-5'>C++</b>中实现类似instanceof的方法

    虹科直播 | 原来LIN总线故障还能这样查?!教你LIN总线译码技巧及运用!

    的。与此同时,电压数值正常与否,也只是判断物理层是否正常的依据之一。在拥有多个从模块的LIN总线上,想要准确查找通讯故障根源,还需要将总线上的信号翻译成更为可读的信息。如
    的头像 发表于 06-20 08:08 502次阅读
    虹科直播 | 原来LIN总线故障<b class='flag-5'>还能</b><b class='flag-5'>这样</b>查?!教你LIN总线译码技巧及运用!

    使用 MISRA C++:2023® 避免基于范围的 for 循环中的错误

    在前两篇博客中,我们 向您介绍了新的 MISRA C++ 标准 和 C++ 的历史 。在这篇博客中,我们将仔细研究以 C++ 中 for 循环为中心的特定规则。
    的头像 发表于 03-28 13:53 744次阅读
    使用 MISRA <b class='flag-5'>C++</b>:2023® 避免基于范围的 for 循环中的错误

    求一种基于TRIZ理论的操控台模块锁紧机构设计方案

    TRIZ是俄文Teoriya Resheniya Izobreatatel-skikh Zadatch的缩写,意思是发明问题解决理论,翻译成英文是Theory of Inventive Problem Solving[1-3],汉语译作“萃智”。
    的头像 发表于 02-29 14:16 359次阅读
    求一种基于TRIZ理论的操控台模块锁紧机构设计方案

    c语言,c++,java,python区别

    C语言、C++、Java和Python是四种常见的编程语言,各有优点和特点。 C语言: C语言是一种面向过程的编程语言。它具有底层的特性,能
    的头像 发表于 02-05 14:11 2284次阅读

    影响AI生态系统的七大主要趋势

    过去,计算机只能在人类语言首先被翻译成代码后才能理解。但通过使用NLP,机器能够在文本保持其自然状态的情况下获取智能。
    的头像 发表于 01-31 12:30 1620次阅读
    影响AI生态系统的七大主要趋势

    如何使用Python进行图像识别的自动学习自动训练?

    如何使用Python进行图像识别的自动学习自动训练? 使用Python进行图像识别的自动学习和自动
    的头像 发表于 01-12 16:06 552次阅读

    C++简史:C++是如何开始的

    MISRA C++:2023,MISRA® C++ 标准的下一个版本,来了!为了帮助您做好准备,我们介绍了 Perforce 首席技术支持工程师 Frank van den Beuken 博士撰写
    的头像 发表于 01-11 09:00 547次阅读
    <b class='flag-5'>C++</b>简史:<b class='flag-5'>C++</b>是如何开始的

    C语言和C++中那些不同的地方

    C语言虽说经常和C++在一起被大家提起,但可千万不要以为它们是一个东西。现在我们常用的C语言是C89标准,C++
    的头像 发表于 12-07 14:29 921次阅读
    <b class='flag-5'>C</b>语言和<b class='flag-5'>C++</b>中那些不同的地方