0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

海思NNIE之Mobilefacenet量化部署教程

电子设计 来源:电子设计 作者:电子设计 2020-12-10 18:55 次阅读
当您点进这篇文章,我想肯定不需要过多的去向您介绍华为海思35xx系列芯片的型号参数或者强大之处。另外这个教程也是建立已经配置好环境,并掌握Ruyi Studio的基本使用前提下的。如果还没有跑过其中的一些sample,网上也有一些教程,推荐刘山老师的博客
作者:Hanson
首发知乎

疫情期间天天打游戏,感觉一阵罪恶,就将以前的做过的东西分享一下,希望能帮助到其他人。之后也会开源一些海思上的模型和inference代码,比如retinaface等,欢迎关注

1.简介

海思35xx系列芯片对比起nvidia TX2Intel Movidius神经计算棒等一众边缘计算产品,有其惊艳的地方,因其集成了强大的算力模块,集成度和功能模块齐全,最重要的是成本低,成为了安防行业的首选芯片。但是也有一些麻烦的地方,主要是在于其开发难度的提高,大家都是摸着石头过河(3288老玩家转行也是能体会到痛苦的)。在转自己的模型时,坑比想象的要多,并且海思官方SDK也存在一些错误之处,让人很难捉摸,所以有时候需要自己多去独立思考。这次我记录了在转换人脸识别模型mobilefacenet下了比较坑的三个点,毕竟是个新玩意儿,多半是版本发布时候不统一造成的:

  • CNN_convert_bin_and_print_featuremap.py 代码出现错误,cfg中的【image_list】这个字段并没有在代码中出现,代码中只有【image_file】,因此需要修改这一地方;
  • CNN_convert_bin_and_print_featuremap.py和Get Caffe Output这里的预处理方式都是先乘以【data_scale】,再减均值【mean_file】,而在量化生成 .mk 文件时却是先减均值再乘以scale的
  • 量化需要使用多张图片,而CNN_convert_bin_and_print_featuremap.py各层产生的feature仅仅是一张图片,这在做【Vector Comparision】时候就难以清楚的明白到底最后mk文件是第几张图像

2.目录结构

3.mobilefacenet.cfg文件的配置

可以从github上下载mxnet2caffe的mobilefacenet模型,

首先要修改mobilefacenet.prototxt的输入层以符合NNIE caffe网络的结构标准

更改后如下:

而量化mk使用的【mean_file】pixel_mean.txt是特别需要注意的

我从agedb_30人脸数据库里面挑选了10张图像来做量化处理,为什么需要多张量化,请参考文章Int8量化-介绍(一),我们选择【10.jpg】来做 【Vector Comparision】,其实就是imageList.txt里的排列在最后的那张图片

具体配置如下:

[prototxt_file] ./mark_prototxt/mobilefacenet_mark_nnie_20190723102335.prototxt
[caffemodel_file] ./data/face/mobilefacenet.caffemodel
[batch_num] 256
[net_type] 0
[sparse_rate] 0
[compile_mode] 0
[is_simulation] 0
[log_level] 3
[instruction_name] ./data/face/mobilefacenet_inst
[RGB_order] RGB
[data_scale] 0.0078125
[internal_stride] 16
[image_list] ./data/face/images/imageList20190723102419.txt
[image_type] 1
[mean_file] ./data/face/pixel_mean.txt
[norm_type] 5

4.生成NNIE mk模型

Start [RuyiStudio Wk NNIE Mapper] [E:/Code/nnie/windows/RuyiStudio-2.0.31/workspace/HeilsFace/mobilefacenet.cfg] HeilsFace (2019-07-23 10:48:17)
Mapper Version 1.1.2.0_B050 (NNIE_1.1) 1812171743151709
begin net parsing....
.end net parsing
begin prev optimizing....
....end prev optimizing....
begin net quantalizing(GPU)....


....................**********************************************************
WARNING: file: Inference::computeNonlinearQuantizationDelta  line: 92
data containing only zeros; set max value to 1e-6.
**********************************************************
WARNING: file: Inference::computeNonlinearQuantizationDelta  line: 92
data containing only zeros; set max value to 1e-6.
.......................................


end quantalizing
begin optimizing....
.end optimizing
begin NNIE[0] mem allocation....
...end NNIE[0] memory allocating
begin NNIE[0] instruction generating....
.............end NNIE[0] instruction generating
begin parameter compressing....
.end parameter compressing
begin compress index generating....
end compress index generating
begin binary code generating....
...................................................................................
...................................................................................
..................................................................................
...................................................................................
.............end binary code generating
begin quant files writing....
end quant files writing
===============E:/Code/nnie/windows/RuyiStudio-2.0.31/workspace/HeilsFace/mobilefacenet.cfg Successfully!===============

结束之后会生成:

  • mobilefacenet_inst.wk文件
  • mapper_quant文件夹,里面有量化输出的结果,如图 Fig.4.1,也就是./data/face/images/10.jpg


Fig.4.1 [image_list]./data/face/images/imageList20190723102419.txt

记住,mk量化过程在【mapper_quant】文件夹中生成的features是最后一张图片的inference结果,这也是文章最开始说的第三个存在问题的地方

5.Vector Comparision

这一步,主要就是对比量化前后模型输出的精度损失,最重要的就是要debug一遍CNN_convert_bin_and_print_featuremap.py

因为这个脚本里确实藏了很多雷,我们先要比较原框架原模型inference的结果与这一脚本得出来的结果是否一致,如果存在不一致的情况,需要去核查一遍原因

文章开篇说到的第一个问题点 CNN_convert_bin_and_print_featuremap.py 中加载了mobilefacenet.cfg文件,但脚本中并不存在【image_list】这个字段,取而代之的是【image_file】这个字段

生成NNIE mk中,mobliefacenet.cfg 的【image_list】:


Fig.5.1 生成NNIE mk中的mobliefacenet.cfg

CNN_convert_bin_and_print_featuremap.py 中加载.cfg代码片段:

因此需要根据实际情况修改 mobliefacenet.cfg ,这里最好是复制一份新的,旧的用于生成NNIE wk,在复制后的mobliefacenet.cfg中修改一下:

另外,我们需要特别注意预处理这一个环节,如文章开篇所阐述的第二点

我们注意到这里,data是uint8类型的array,是先乘以了【data_scale】的,也就是说和NNIE 生成wk中的操作顺序是不一致的。

(data - 128.0) 0.0078125 <==> data 0.0078125 - 1

因此这里需要做的修改就是需要将【mean_file】pixel_mean.txt修改为

修改完以上,然后直接运行代码,将最终模型提取的features fc1_output0_128_caffe.linear.float和caffe_forward.py中的进行比对,如果以上都没问题,可以看到结果是几乎一致的

caffe_forward.py生成的结果:

[-0.82475293 -0.33066949 -0.9848339   2.44199681 0.41715512  0.67809981   0.29879519  1.14293635 -0.42905819  0.32940909 -1.20455348  1.01217067 0.83146936 -0.84349883 -1.49177814 -0.91509151 -1.39441037  0.00413842  0.97043389 -1.77688181  0.28639579 -1.06645989 -0.8570649  -2.09743094 -0.1394622  -1.15035641 -0.81590587 -3.93798804 -0.35600579  1.90367532 1.27935755 -2.07778478 -0.42563218  0.06624207  1.02597868 -0.52002895 -0.905873   -0.41364694 -1.40032899 -1.37654066  0.03066693 -0.18659458 -1.53931415 -0.55896652  2.42570448 -0.3044413   0.18183242  0.50442797 -2.36735368 -0.12376076  0.15200013  0.13939141  0.56305337 -0.10047323 1.50704932  0.05429612 -1.97527623 -0.75790995  1.89399767  0.56089604
 -2.34883094  0.22600658  1.00399816 -0.55099922  1.77083731  0.10722937 2.21140814  0.06182361  0.03354079  0.97481596 -2.00423741  0.73168194 -1.79977489 -0.85182911 -0.06020565 -0.14835797 -1.93012297 -3.09269047 -0.60087907 -1.02915597  1.40985525  1.85411906 -1.21282506 -2.53264689 -0.63467324 -1.15255475 -0.59994221  0.21181655  1.30336523 -1.73625863 0.00861333  0.99906266  1.90666902  0.51179212  0.62143475  1.01997399 -1.65181398  1.55190873  0.43448481 -0.85371047 -0.68216199  1.28038061 0.4629558  -0.59671575  1.00122356  1.74233603  1.50384009  0.49827856 0.67030573 -1.20388556  1.00168729 -0.71768999  1.06416941 -2.55346298 -1.85579956 -2.18774438 -1.79652691  1.50856853  2.10628557  1.12313557 2.76396179  0.60242128  0.0550903  -1.31998527 -0.6896565  -0.07160443 1.21242583 -1.06733179]

CNN_convert_bin_and_print_featuremap.py生成的结果(由于特征值太多,就不一一打印出来了):

然后在生成,并进行【Vector Comparision】,量化终于成功了

6.NNIE mobilefacenet板上特征提取

做完了模型的量化,就可以进行仿真或者是在板子上进行实际测试了,这一步的坑并不是很多,主要还是得靠一些编程技巧了,建议熟悉C语言,这部分要熟悉sample代码,如果说非常熟悉c/c++混编,也可以使用c++。

1. 修改例程

这里我参考了博客,其写法几乎一致,如下Fig.6.1 Fig.6.2是我所修改的代码片段,找到smp/a7_linux/mpp/sample/svp/nnie/sample/sample_nnie.c中该函数

void SAMPLE_SVP_NNIE_Cnn(void)

只用修改了该函数的前后两处代码


Fig.6.1 函数开头修改pcSrcFile和pcModeName


Fig.6.2 函数结尾增加输出层的打印信息

我们调用了 SAMPLE_SVP_NNIE_PrintReportResult 函数输出两个结果报表文件,结果分析当中会用到

seg0_layer38_output0_inst.linear.hex
seg0_layer3605_output0_inst.linear.hex

整段函数代码参见文章末尾【附录】

2. bgr文件的生成

注意到上文中我使用了pcSrcFile,这也是例程中主流的格式bgr,那么我们一般的图片都是.jpeg格式的,为了更好的利用NNIE,所以就需要利用opencv来转化以下。

首先.bgr文件是可以由opencv Mat转换的,但完成转换代码的编写之前我们必须清楚像素的空间排列顺序。注意,以下转换代码简单采用像素复制,并没有考虑优化,运行会比较慢!参考博客

.bgr ==> BBBBBB...GGGGGG...RRRRRR

cv::Mat ==> BGRBGRBGR...BGRBGRBGR

.bgr --> cv::Mat


Fig.6.3 .bgr 转 mat

/*bgr格式 转 cv::Mat代码 */
int bgr2mat(cv::Mat& img, int width, int height, int channel, const char* pth)
{
    if (pth)
    {
        FILE* fp;
        unsigned char *img_data = NULL;
        unsigned char *img_data_conv = NULL;
        img_data = (unsigned char*)malloc(sizeof(unsigned char) * width * height * channel);
        //unsigned char img_data[300 * 300 * 3];
        img_data_conv = (unsigned char*)malloc(sizeof(unsigned char) * width * height * channel);

        fp = fopen(pth, "rb");
        if (!fp)
        {
            return 0;
        }
        fread(img_data, 1, width * height * channel, fp);
        fclose(fp);

        for (size_t k = 0; k < channel; k++)
            for (size_t i = 0; i < height; i++)
                for (size_t j = 0; j < width; j++)
                    img_data_conv[channel * (i * width + j) + k] = img_data[k * height * width + i * width + j];
        img = cv::Mat(height, width, CV_8UC3, img_data_conv);
        //free(img_data_conv);
        //img_data_conv = NULL;
        free(img_data);
        img_data = NULL;
        return 1;
    }
    return 0;
}

cv::Mat -->.bgr


Fig.6.4 mat转.bgr

/*cv::Mat 转 bgr格式代码 */
int mat2bgr(cv::Mat& img, const char* bgr_path)
{
    if (bgr_path)
    {
        FILE* fp = fopen(bgr_path, "wb");
        int step = img.step;
        int h = img.rows;
        int w = img.cols;
        int c = img.channels();
        std::cout << step<< std::endl;
        for (int k = 0; k < c; k++)
            for (int i = 0; i < h; i++)
                for (int j = 0; j < w; j++)
                {
                    //两种写法
                    //fwrite(&img.data[i*step + j * c + k], sizeof(uint8_t), 1, fp);
                    fwrite(&img.data[c*(i * w + j) + k], sizeof(uint8_t), 1, fp);
                }
        fclose(fp);
        //cv::Mat tmp;
        //bgr2mat(tmp, w, h, 3, bgr_path);
        //cv::imshow("tmp", tmp);
        //cv::waitKey(0);
        return 1;
    }
    return 0;
}

3. 模型额外问题

pc上运行
E:/Code/nnie/software/sample_simulator/Release/sample_simulator.exe

板上运行
/nfsroot/Hi3516CV500_SDK_V2.0.1.0/smp/a7_linux/mpp/sample/svp/nnie # ./sample_nnie_main 4

可能会出现如下(Fig.6.5,Fig.6.6)错误,原因是生成NNIE wk文件的mapper工具有版本要求,下面错误当中使用的nnie mapper 版本是V1.1.2.0,而指令仿真或者是板上的SDK是V1.2的,解决办法就是使用nnie mapper V1.2版本重新生成一下wk模型,如(Fig.6.7),生成inst/chip.wk的时间比较久,在我机器上大概要2个小时,因为inst.wk实际上是需要进行参数压缩和二进制代码生成,这可能也是inst.mk比func.wk文件大的原因(如Fig.6.8),而生成func.wk的时间会比较短,建议在PC上调试的时候选择func/simulation模型


Fig.6.5 PC运行仿真例程sample_simulator会出现该log


Fig.6.6 板上测试SDK修改的例程


Fig.6.7 改变工程依赖的NNIE版本为指定芯片


Fig.6.8 模型尺寸比较

4. 运行结果及分析

修改完sample_nnie.c中的代码后,在宿主机上进行make,然后到海思板子上运行可执行文件即可


Fig.6.9 板上运行结果

拷贝出生成的两个打印报表文件到Ruyi studio,进行比对测试

seg0_layer38_output0_inst.linear.hex
seg0_layer3605_output0_inst.linear.hex

如Fig.6.10,Fig.6.11,虽然说板上和仿真情况下还是会有一定的差别,但总体的误差是比较小的,基本可以接受,如果无法接受,可以尝试int16模型


Fig.6.10 量化模型在板子上的输出结果和pc上的结果比对(cosine similarity > 99.6)


Fig.6.11 无量化caffe输出与板上量化输出比对(cosine similarity > 99.1)

7.附录

void SAMPLE_SVP_NNIE_Cnn(void)
{
    HI_CHAR *pcSrcFile = "./data/nnie_image/rgb_planar/10.bgr";
    HI_CHAR *pcModelName = "./data/nnie_model/face/mobilefacenet_inst.wk";
    HI_U32 u32PicNum = 1;
    HI_S32 s32Ret = HI_SUCCESS;
    SAMPLE_SVP_NNIE_CFG_S   stNnieCfg = {0};
    SAMPLE_SVP_NNIE_INPUT_DATA_INDEX_S stInputDataIdx = {0};
    SAMPLE_SVP_NNIE_PROCESS_SEG_INDEX_S stProcSegIdx = {0};

    /*Set configuration parameter*/
    stNnieCfg.pszPic= pcSrcFile;
    stNnieCfg.u32MaxInputNum = u32PicNum; //max input image num in each batch
    stNnieCfg.u32MaxRoiNum = 0;
    stNnieCfg.aenNnieCoreId[0] = SVP_NNIE_ID_0;//set NNIE core
    s_stCnnSoftwareParam.u32TopN = 5;

    /*Sys init*/
    SAMPLE_COMM_SVP_CheckSysInit();

    /*CNN Load model*/
    SAMPLE_SVP_TRACE_INFO("Cnn Load model!/n");
    s32Ret = SAMPLE_COMM_SVP_NNIE_LoadModel(pcModelName,&s_stCnnModel);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_0,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,SAMPLE_COMM_SVP_NNIE_LoadModel failed!/n");

    /*CNN parameter initialization*/
    /*Cnn software parameters are set in SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit,
     if user has changed net struct, please make sure the parameter settings in
     SAMPLE_SVP_NNIE_Cnn_SoftwareParaInit function are correct*/
    SAMPLE_SVP_TRACE_INFO("Cnn parameter initialization!/n");
    s_stCnnNnieParam.pstModel = &s_stCnnModel.stModel;
    s32Ret = SAMPLE_SVP_NNIE_Cnn_ParamInit(&stNnieCfg,&s_stCnnNnieParam,&s_stCnnSoftwareParam);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_0,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,SAMPLE_SVP_NNIE_Cnn_ParamInit failed!/n");

    /*record tskBuf*/
    s32Ret = HI_MPI_SVP_NNIE_AddTskBuf(&(s_stCnnNnieParam.astForwardCtrl[0].stTskBuf));
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_0,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,HI_MPI_SVP_NNIE_AddTskBuf failed!/n");

    /*Fill src data*/
    SAMPLE_SVP_TRACE_INFO("Cnn start!/n");
    stInputDataIdx.u32SegIdx = 0;
    stInputDataIdx.u32NodeIdx = 0;
    s32Ret = SAMPLE_SVP_NNIE_FillSrcData(&stNnieCfg,&s_stCnnNnieParam,&stInputDataIdx);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_1,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,SAMPLE_SVP_NNIE_FillSrcData failed!/n");

    /*NNIE process(process the 0-th segment)*/
    stProcSegIdx.u32SegIdx = 0;
    s32Ret = SAMPLE_SVP_NNIE_Forward(&s_stCnnNnieParam,&stInputDataIdx,&stProcSegIdx,HI_TRUE);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_1,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,SAMPLE_SVP_NNIE_Forward failed!/n");

    /*Software process*/
    /*if user has changed net struct, please make sure SAMPLE_SVP_NNIE_Cnn_GetTopN
     function's input datas are correct*/
    s32Ret = SAMPLE_SVP_NNIE_Cnn_GetTopN(&s_stCnnNnieParam,&s_stCnnSoftwareParam);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_1,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,SAMPLE_SVP_NNIE_CnnGetTopN failed!/n");

    /*Print result*/
    SAMPLE_SVP_TRACE_INFO("Cnn result:/n");
    s32Ret = SAMPLE_SVP_NNIE_Cnn_PrintResult(&(s_stCnnSoftwareParam.stGetTopN),
        s_stCnnSoftwareParam.u32TopN);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_1,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,SAMPLE_SVP_NNIE_Cnn_PrintResult failed!/n");

    /*Print results*/
    {
        printf("features:/n{/n");
        printf("stride: %d/n",s_stCnnNnieParam.astSegData[0].astDst[0].u32Stride);
        printf("blob type :%d/n",s_stCnnNnieParam.astSegData[0].astDst[0].enType);
        printf("{/n/tc :%d", s_stCnnNnieParam.astSegData[0].astDst[0].unShape.stWhc.u32Chn);
        printf("/n/th :%d", s_stCnnNnieParam.astSegData[0].astDst[0].unShape.stWhc.u32Height);
        printf("/n/tw :%d /n}/n", s_stCnnNnieParam.astSegData[0].astDst[0].unShape.stWhc.u32Width);
        HI_S32* ps32Score = (HI_S32* )((HI_U8* )s_stCnnNnieParam.astSegData[0].astDst[0].u64VirAddr);
        printf("blobs fc1:/n[");
        for(HI_U32 i = 0; i < 128; i++)
        {
            printf("%f ,",*(ps32Score + i) / 4096.f);
        }
        
        printf("]/n}/n");
    }
    s32Ret = SAMPLE_SVP_NNIE_PrintReportResult(&s_stCnnNnieParam);
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret, CNN_FAIL_1, SAMPLE_SVP_ERR_LEVEL_ERROR,"Error,SAMPLE_SVP_NNIE_PrintReportResult failed!");

CNN_FAIL_1:
    /*Remove TskBuf*/
    s32Ret = HI_MPI_SVP_NNIE_RemoveTskBuf(&(s_stCnnNnieParam.astForwardCtrl[0].stTskBuf));
    SAMPLE_SVP_CHECK_EXPR_GOTO(HI_SUCCESS != s32Ret,CNN_FAIL_0,SAMPLE_SVP_ERR_LEVEL_ERROR,
        "Error,HI_MPI_SVP_NNIE_RemoveTskBuf failed!/n");

CNN_FAIL_0:
    SAMPLE_SVP_NNIE_Cnn_Deinit(&s_stCnnNnieParam,&s_stCnnSoftwareParam,&s_stCnnModel);
    SAMPLE_COMM_SVP_CheckSysExit();
}
更多模型芯片端部署,请关注嵌入式AI专栏

审核编辑 黄昊宇
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 嵌入式系统
    +关注

    关注

    41

    文章

    3556

    浏览量

    129167
收藏 人收藏

    评论

    相关推荐

    3559开发板

    `创发布3559开发板,深圳市前海海芯创科技有限公司定位专注于为领先的消费类电子产品解决方案商。与
    发表于 09-11 11:33

    基于带NNIE神经网络3559A方案边缘计算主板开发及接口定义

    硬件配置——————————————————————————————————-Hi3559AV100 CPU,双核ARM CortexA73@1.8GHz+双核ARM Cortex
    发表于 06-20 11:32

    深圳回收系列芯片

    深圳回收系列芯片深圳高价回收系列芯片,东莞专业回收系列芯片,重庆高价收购
    发表于 05-08 17:45

    深圳专业回收IC 收购芯片

    芯片大量收购,高价回收芯片IC ☆★★帝欧电子赵先生 135★★3012★★2202☆★★ QQ :8798-21252 (同步微信)【【
    发表于 09-26 17:55

    深圳高价回收系列芯片

    深圳回收系列芯片深圳高价回收系列芯片,东莞专业回收系列芯片,重庆高价收购
    发表于 10-20 19:13

    芯片大量收购,高价回收IC

    芯片大量收购,高价回收IC ☆★★帝欧电子赵先生 135-3012-2202☆★★ QQ :8798-21252(同步微信)Hisilicon 电子芯片收购, 收购Hisili
    发表于 12-28 17:04

    润和3559A开发版例程编译

    用编译链编译3559A的SDK中NNIE范例程序,上载至润和的开发版上运行。板卡执行YOLOv3的硬件参数写入函数时产生了内核错误Unable to handle kernel NULL
    发表于 06-29 12:29

    润和3559A开发版nnie例程运行过程中系统崩溃

    根据(35条消息) 华为 AI 芯片 (Hi3559A V100) 算法开发(五) 在 Hi3559 上运行 YOLOv3_Sober-C的博客-CSDN博客_hi3559 yolov3流程在hi3559av100开发板上运行nni
    发表于 09-06 10:15

    带你玩转OpenHarmony AI-基于NNIE的AI能力自定义

    。方便广大开发者更好地了解和掌握NNIE AI开发。OpenHarmony AI能力的丰富离不开广大开发者的参与和共建,也期待更多的开发者加入知识体系组,做出更多富有想象力的作品!参考链接
    发表于 01-12 11:39

    AI芯片方案学习(二十三)nnie上进行图像数据预处理(Normalize)的五种方式

    本系列为华为AI芯片(Hi3519A/3559A)方案学习系列之二十三,系列文章请关注
    发表于 01-26 18:42 3次下载
    <b class='flag-5'>海</b><b class='flag-5'>思</b>AI芯片方案学习(二十三)<b class='flag-5'>nnie</b>上进行图像数据预处理(Normalize)的五种方式

    AI芯片方案学习(二十二)如何在ubuntu18.0.4上跑通nnie mapper

    本系列为华为AI芯片(Hi3519A/3559A)方案学习系列之二十二,系列文章请关注
    发表于 01-26 18:42 6次下载
    <b class='flag-5'>海</b><b class='flag-5'>思</b>AI芯片方案学习(二十二)如何在ubuntu18.0.4上跑通<b class='flag-5'>nnie</b> mapper

    AI芯片(Hi3519A/3559A)方案学习(十五)基于nnie引擎进行推理的仿真代码浅析

    本系列为华为AI芯片(Hi3519A/3559A)方案学习系列十五,主要对基于nnie
    发表于 01-26 18:56 9次下载
    <b class='flag-5'>海</b><b class='flag-5'>思</b>AI芯片(Hi3519A/3559A)方案学习(十五)基于<b class='flag-5'>nnie</b>引擎进行推理的仿真代码浅析

    AI芯片学习(十)将yolov3 darknet模型转换为caffemodel

    35xx系列的nnie硬件引擎只支持caffe1.x模型。所以任何使用其它框架训练出来的算法模型想要在nnie上进行推理必须先要将其转换成caffe...
    发表于 01-26 19:09 0次下载
    <b class='flag-5'>海</b><b class='flag-5'>思</b>AI芯片学习(十)将yolov3 darknet模型转换为caffemodel

    NNIEPFPLD训练与量化

    之前写了关于NNIE的一些量化部署工作,笔者不才,文章没有写得很具体,有些内容并没有完全写在里面。好在目前看到了一些使用nniefac.
    发表于 02-07 12:05 0次下载
    <b class='flag-5'>海</b><b class='flag-5'>思</b><b class='flag-5'>NNIE</b><b class='flag-5'>之</b>PFPLD训练与<b class='flag-5'>量化</b>

    NNIERetinaFace量化部署

    关于上述内容,还是得到了一些认可,索性把人脸全家福奉上了,接坑![链接]​nniefacelib是一个在35xx系列芯片上运行的人脸算法库,...
    发表于 02-07 12:32 1次下载
    <b class='flag-5'>海</b><b class='flag-5'>思</b><b class='flag-5'>NNIE</b><b class='flag-5'>之</b>RetinaFace<b class='flag-5'>量化</b><b class='flag-5'>部署</b>