0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

RGPNET:复杂环境下实时通用语义分割网络

电子设计 来源:电子设计 作者:电子设计 2020-12-10 19:15 次阅读
本文介绍的论文提出了一种新的实时通用语义分割体系结构RGPNet,在复杂环境下取得了显著的性能提升。
作者: Tom Hardy
首发:3D视觉工坊微信公众号

论文:RGPNet: A Real-Time General Purpose Semantic Segmentation (文末可下载
论文链接:https://arxiv.org/abs/1912.01394

一、主要思想

本文提出了一种新的实时通用语义分割体系结构RGPNet,在复杂环境下取得了显著的性能提升。RGPNet由一个轻量级的非对称编码器-解码器和一个适配器组成。适配器有助于从编码器和解码器之间的多层分布式表示中保留和细化抽象概念。它也有助于从较深层到较浅层的梯度流动。大量实验表明,与目前最先进的语义分割网络相比,RGPNet具有更好的性能。

此外还证明了在保持性能的同时,使用改进的标签松弛技术和逐步调整大小可以减少60%的训练时间。论文还对应用在资源受限的嵌入式设备上的RGPNet进行了优化,使推理速度提高了400%,性能损失可以忽略不计。RGPNet在多个数据集之间获得了更好的速度和精度权衡。

二、创新点

1、提出的RGPNet作为一种通用的实时语义分割体系结构,它可以在单分支网络中获得高分辨率的深层特征,从而提高准确性和降低延迟,在复杂的环境中具有竞争力。

2、引入一个适配器模块来捕获多个抽象级别,以帮助细分的边界细化,适配器还通过添加较短的路径来辅助渐变梯度流。

3、对于green AI,在训练期间采用渐进式调整大小技术,从而使训练时间和环境影响减少60%,并且采用一种改进的标签松弛来消除低分辨率标签映射中的混叠效应。

4、使用TensorRT(一个高性能深度学习推理平台)优化RGPNet,以便部署在边缘计算设备上,从而使推理速度提高400%。

5、RGPNet在Cityscpes、CamVid和Mapillary数据集上分别实现了Resnet-101作为backbone 下80.9%、69.2%和50.2% mIoU以及Resnet-18作为backbone下74.1%、66.9%和41.7% mIoU。对于1024×2048分辨率的图像,RGPNet在CityScapes数据集上单NVIDIA GTX2080Ti GPU下达到37.4 FPS。

三、网络结构

RGPNet的整体结构如下所示,每个箭头都有对应的操作模式:

  • 中间一列操作为编码器
  • 最右边操作为解码器
  • “+”操作为适配器(Adaptor)

其中“+”详细操作如下所示:
1、T(:)是一个转换函数,它用来减少编码器模块输出通道数量并将其传输到adaptor。
2、D(:)和U(:)是下采样和上采样功能。

Adaptor有许多优点:

1、Adaptor聚合来自不同上下文和空间级别的特征。
2、通过引入较短的路径,有助于梯度从较深的层流向较浅的层。
3、Adaptor允许使用轻量解码器的不对称设计,这将减少卷积层,进一步增强梯度流。因此,Adaptor使网络适合于实时应用,因为它在保留空间信息的同时提供了丰富的语义信息。

针对带标签松弛的渐进式调整

论文采取了最大化像素周围区域相似度分布,而不是单个像素级别的标签最大可能化,针对边界类别,提出了边界损失函数。

四、实验结果

多种网络在Mapillary Vistas数据集上的测试结果:

几种网络在Mapillary Vistas数据集上的性能对比:

在CamVid数据集上的性能对比:

RGPNet使用TensorRT在GTX2080Ti和Xavier上速度对比:

综合速度和准确率以及实际部署下的性能,RGPNet都非常具有竞争力~!

推荐阅读

重点介绍:1、3D视觉算法;2、vslam算法;3、图像处理;4、深度学习;5、自动驾驶;6、技术干货博主及合伙人分别来国内自知名大厂、海康研究院,深研3D视觉、深度学习、图像处理、自动驾驶、目标检测、VSLAM算法等领域。
欢迎关注微信公众号

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1791

    文章

    46952

    浏览量

    237810
  • 计算机视觉
    +关注

    关注

    8

    文章

    1696

    浏览量

    45936
收藏 人收藏

    评论

    相关推荐

    复杂环境多无人智能车辆协同调控

    摘要: 该文对多无人智能车以领航-跟随法在复杂环境运动的编队控制问题进行了探讨,通过采用闭环控制律设计了一种编队控制器和编队控制方案,该编队控制器的优点在于其主要考虑智能车之间的距离和角度,同时
    的头像 发表于 11-16 10:12 242次阅读
    <b class='flag-5'>复杂</b><b class='flag-5'>环境</b><b class='flag-5'>下</b>多无人智能车辆协同调控

    使用语义线索增强局部特征匹配

    视觉匹配是关键计算机视觉任务中的关键步骤,包括摄像机定位、图像配准和运动结构。目前最有效的匹配关键点的技术包括使用经过学习的稀疏或密集匹配器,这需要成对的图像。这些神经网络对两幅图像的特征有很好的总体理解,但它们经常难以匹配不同语义区域的点。
    的头像 发表于 10-28 09:57 138次阅读
    使<b class='flag-5'>用语义</b>线索增强局部特征匹配

    语义分割25种损失函数综述和展望

    语义图像分割,即将图像中的每个像素分类到特定的类别中,是许多视觉理解系统中的重要组成部分。作为评估统计模型性能的主要标准,损失函数对于塑造基于深度学习的分割算法的发
    的头像 发表于 10-22 08:04 171次阅读
    <b class='flag-5'>语义</b><b class='flag-5'>分割</b>25种损失函数综述和展望

    手册上新 |迅为RK3568开发板NPU例程测试

    测试 6.1 deeplabv3语义分割 6.2 lite_transformer 6.3 LPRNet车牌识别 6.4 mobilenet图像分类 6.5 PPOCR-Rec文字识别 6.6
    发表于 08-12 11:03

    复杂电磁环境模拟系统设计方案

    是能够模拟真实战场或特定测试场景复杂电磁环境,包括各种通信信号、雷达信号、干扰信号、噪声等,以评估电子设备的性能和稳定性。 智慧华盛恒辉系统组成 1. 信号生成单元 功能:根据预设或实时
    的头像 发表于 07-17 17:06 387次阅读

    图像语义分割的实用性是什么

    图像语义分割是一种重要的计算机视觉任务,它旨在将图像中的每个像素分配到相应的语义类别中。这项技术在许多领域都有广泛的应用,如自动驾驶、医学图像分析、机器人导航等。 一、图像语义
    的头像 发表于 07-17 09:56 377次阅读

    图像分割语义分割的区别与联系

    图像分割语义分割是计算机视觉领域中两个重要的概念,它们在图像处理和分析中发挥着关键作用。 1. 图像分割简介 图像分割是将图像划分为多个区
    的头像 发表于 07-17 09:55 752次阅读

    图像分割语义分割中的CNN模型综述

    图像分割语义分割是计算机视觉领域的重要任务,旨在将图像划分为多个具有特定语义含义的区域或对象。卷积神经网络(CNN)作为深度学习的一种核心
    的头像 发表于 07-09 11:51 715次阅读

    工业级路由器:让你轻松应对复杂网络环境

    工业级路由器助力应对复杂网络环境。具备高稳定性、高带宽、强抗干扰能力,适用于工厂、矿区、机场等恶劣环境。选择可靠品牌和关注售后服务是关键,提高网络
    的头像 发表于 05-06 11:58 206次阅读

    STM32F107VCT6+DP83848在复杂网络环境网络部分挂掉的原因?怎么解决?

    几个小时后,就有6个控制板会网络不通,有4个还是通的。有时开一天都正常。 现在怀疑是因网络环境复杂之后,有时有大量的广播数据包导致单片机网络
    发表于 04-11 07:24

    fpga通用语言是什么

    FPGA(现场可编程门阵列)的通用语言主要是指用于描述FPGA内部逻辑结构和行为的硬件描述语言。目前,Verilog HDL和VHDL是两种最为广泛使用的FPGA编程语言。
    的头像 发表于 03-15 14:36 493次阅读

    复杂环境,车载中控系统如何助力指挥车高效运作

    复杂多变的环境中,讯维车载中控系统通过其先进的技术和强大的功能,为指挥车的高效运作提供了重要支持。以下是几个方面的表现: 一、强大的信息感知与处理能力 在复杂环境
    的头像 发表于 03-06 16:15 340次阅读

    助力移动机器人下游任务!Mobile-Seed用于联合语义分割和边界检测

    精确、快速地划定清晰的边界和鲁棒的语义对于许多下游机器人任务至关重要,例如机器人抓取和操作、实时语义建图以及在边缘计算单元上执行的在线传感器校准。
    的头像 发表于 02-20 10:30 860次阅读
    助力移动机器人下游任务!Mobile-Seed用于联合<b class='flag-5'>语义</b><b class='flag-5'>分割</b>和边界检测

    分布式大屏控制系统对网络环境的要求

    数据,因此需要具备高带宽的网络环境。足够的带宽可以确保信号传输的流畅性和实时性,避免数据拥堵和延迟。通常情况,系统需要千兆级别或更高的带宽。 稳定性:由于分布式大屏控制系统需要
    的头像 发表于 01-29 14:52 554次阅读

    三项SOTA!MasQCLIP:开放词汇通用图像分割网络

    MasQCLIP在开放词汇实例分割语义分割和全景分割三项任务上均实现了SOTA,涨点非常明显。这里也推荐工坊推出的新课程《彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与
    的头像 发表于 12-12 11:23 768次阅读
    三项SOTA!MasQCLIP:开放词汇<b class='flag-5'>通用</b>图像<b class='flag-5'>分割</b>新<b class='flag-5'>网络</b>