0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

研究人员开发出可用于全固态二次电池的新型电极结构

姚小熊27 来源:盖世汽车 作者:盖世汽车 2020-12-11 14:03 次阅读

据外媒报道,韩国研究人员开发了一种可用于全固态二次电池的新型电极结构。如果这项技术得到采用,与现有技术相比,电池的能量密度将显著提高,极大促进高性能二次电池的发展。

联合研究小组的成员分别来自韩国电子通信研究院(ETRI)和大邱庆北科学技术院(DGIST)。他们发现锂离子在活性物质之间容易扩散的机理,并针对全固态二次电池设计了一种新型电极结构。

与只能使用一次的原电池不同,二次电池可以充电并重复使用。对于机器人、电动汽车、储能系统(ESS)和无人机等应用来说,二次电池技术的重要性正在逐渐提升。全固态二次电池通过固体电解质在电池电极内传输离子,与液态电解液相比,固体电解质更加安全,不易引发火灾。此外,在双极型二次电池中,可以使用固体电解质,通过简单的电池配置来提升能量密度。

在常规全固态二次电池的电极结构中,固体电解质负责传导离子,导电添加剂提供电子传导方式,活性材料负责储存能量,而粘合剂可以从物理和化学意义上支持这些构成部分。然而,ETRI的研究人员通过系统性实验发现,即使在石墨活性物质颗粒之间,也可以传输离子。他们提出一种新的电极结构,可用于仅由活性物质和粘合剂组成的全固态二次电池。研究人员证实,即使电极内没有固体电解质添加剂,全固态二次电池也可以表现出更好的性能。

在DGIST,研究人员通过在超级计算机上运行虚拟模型电化学测试,验证ETRI提出的新型结构的理论可行性。在具体实验中,ETRI研究人员成功演示了这种结构,其结果是形成依赖于扩散的全固态电极。如果采用ETRI的技术,电极中将不再需要固体导电添加剂材料;相反,可以将更多活性材料压缩至相同体积中。换言之,电极中的活性物质含量可增加至98wt%,使能量密度大于常规石墨复合电极的1.5倍。

这项技术在制造工艺方面也具有优势。硫化物类固体电解质具有较高的离子电导率和适当的可塑性,被认为是制备全固态电池的理想候选材料。但是,由于其化学反应活性高,硫化物类固体电解质使得电池开发商几乎无法选择溶剂和粘合剂。相比之下,有了新型ETRI电极,开发者可以自由地选择在电池中使用的溶剂和粘合剂,因为电极中没有高活性固体电解质。因此,研究人员可以进一步寻求新方法,提高全固态二次电池的性能。

研究人员Young-Gi Lee博士表示:“我们首次发现,离子可以仅通过活性物质进行扩散。我们不再局限于现有全固态二次电池的结构。我们计划利用这项技术,开发能量密度更高的二次电池。我们还将确保拥有核心技术的权利,并致力于将其投入商用。”

本次研究使用的是石墨正极活性材料。ETRI计划,在相同的概念基础上,继续对其他电极材料进行研究。他们还计划加强这项技术,以提高效率,这可以通过消除电极之间的界面问题和减少电极体积来实现。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    811

    浏览量

    20054
  • 二次电池
    +关注

    关注

    0

    文章

    39

    浏览量

    9769
  • 电池
    +关注

    关注

    84

    文章

    10567

    浏览量

    129595
收藏 人收藏

    评论

    相关推荐

    Honda首次公开全固态电池面向量产化的示范生产线

      2024年11月21日,Honda首次公开自研全固态电池面向量产化的示范生产线。该生产线位于日本栃木县的本田技术研究所,主要将用于全固态
    的头像 发表于 11-25 09:59 387次阅读
    Honda首次公开<b class='flag-5'>全固态</b><b class='flag-5'>电池</b>面向量产化的示范生产线

    小型低功耗锂二次电池解决方案

    本期我们介绍适用于物联网传感器和可穿戴设备使用锂二次电池的电源配置。
    的头像 发表于 11-11 10:47 260次阅读
    小型低功耗锂<b class='flag-5'>二次</b><b class='flag-5'>电池</b>解决方案

    全固态电池领域频现重量级合作

    本周,固态电池领域迎来了多笔产业合作,标志着全固态电池的发展步伐显著加快。   10月21日,中石化资本完成了对中科深蓝汇泽的Pre-A轮融资,同时,蠡湖股份宣布与高能时代携手成
    的头像 发表于 10-25 11:42 637次阅读

    二次电池分类以及应用场景详解

    : 从结构上看,二次电池在放电时电极体积和结构之间发生可逆变化,而一
    的头像 发表于 09-29 16:33 737次阅读
    <b class='flag-5'>二次</b><b class='flag-5'>电池</b>分类以及应用场景详解

    全固态电池再进一步,能量密度与使用寿命双突破

    的工作温度范围以及更简单的结构与设计。   目前已经有许多研究机构和企业都在积极研发全固态电池技术,并取得了不同程度的进展。比如中国数家研究
    的头像 发表于 09-09 00:17 2744次阅读

    LTO充电小型锂二次电池解决方案

    可用2.5V~2.7V的稳压器(LDO)进行恒压充电,无需特殊电池充电IC的标称电压2.2V~2.4V的锂二次电池全固态
    的头像 发表于 09-02 17:23 587次阅读
    LTO充电小型锂<b class='flag-5'>二次</b><b class='flag-5'>电池</b>解决方案

    Li-ion/Polymer二次电池的应用方案

    Li-ion/Polymer二次电池用于许多设备,也被用于物联网/传感器、可穿戴设备以及工业设备的备份。
    的头像 发表于 09-02 17:14 608次阅读
    Li-ion/Polymer<b class='flag-5'>二次</b><b class='flag-5'>电池</b>的应用方案

    青岛能源所攻破硫化物全固态电池技术难题,预计2026年实现产业化

    电池能量密度与安全性能是推动新能源汽车可持续发展的关键因素。全固态电池因其具备安全性高、稳定性强、能量密度大等特点,有效解决了传统有机电解液电池寿命短、易燃、易爆等问题,被视为下一代最
    的头像 发表于 04-11 11:34 638次阅读

    太蓝新能源宣布已成功研发出世界首块车规级全固态锂金属电池

    固态电解质和负极材料是全固态电池最为核心的研究方向。
    的头像 发表于 04-08 09:20 1322次阅读

    三菱综合材料成功开发一种全固态电池材料的制造新技术

    三菱综合材料株式会社成功开发出了一种,能够实现全固态电池材料之一的硫化物固态电解质量产化的新制造技术。
    的头像 发表于 02-27 14:52 1058次阅读
    三菱综合材料成功<b class='flag-5'>开发</b>一种<b class='flag-5'>全固态</b>锂<b class='flag-5'>电池</b>材料的制造新技术

    全固态电池会颠覆锂离子电池吗?

    由于传统液态电池的成本快速下降,目前全固态电池在提高安全性方面有优势。从全固态电池的路线来看,需要在产业链层面进行大量的投资,是需要花费大量
    发表于 01-22 14:10 658次阅读
    <b class='flag-5'>全固态</b><b class='flag-5'>电池</b>会颠覆锂离子<b class='flag-5'>电池</b>吗?

    全固态锂金属电池负极界面设计

    全固态锂金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。
    的头像 发表于 01-16 10:14 809次阅读
    <b class='flag-5'>全固态</b>锂金属<b class='flag-5'>电池</b>负极界面设计

    充放电循环超6000,又一新型电池面世

    日前,美国哈佛大学工程与应用科学学院研究人员开发了一种新型锂金属固态电池
    的头像 发表于 01-11 14:27 977次阅读

    铜集流体是否适用于硫化物全固态电池

    硫化物全固态电池因其高能量密度、高安全性、长循环寿命引起了研究界的广泛关注。
    的头像 发表于 01-10 09:16 1115次阅读
    铜集流体是否适<b class='flag-5'>用于</b>硫化物<b class='flag-5'>全固态</b><b class='flag-5'>电池</b>?

    全固态电池到底有哪些闪光点?

    全固态电池到底有哪些闪光点? 全固态电池是一种新型电池技术,相比传统液态
    的头像 发表于 01-09 17:09 757次阅读