近年来,高性能计算(HPC)在科学研究中的广泛采用使科学进步以前所未有的速度发展。超级计算机可以比科学家在现实生活中进行实验或复制无法进行实验的过程更快地模拟各种过程。但是,仿真并不是科学研究的唯一有效方法,而人工智能和深度学习可以极大地增强仿真。这就是来自斯图加特高性能计算中心的科学家计划在未来几个月内使用Nvidia的A100 GPU升级其仅CPU的Hawk超级计算机的原因。
深度学习协助模拟
多年以来,科学家一直使用模拟研究空气动力学,气候模型,计算流体动力学和分子动力学等领域。研究人员开发的仿真算法基于基本的科学原理,非常精确。这种精度要求使用数千个CPU内核以及双精度浮点格式(FP64),这通常意味着要有效运行的编程技能,相当长的计算时间以及生成大量数据。最近,CPU和GPU获得了重要的人工智能(AI)和深度学习(DL)功能,这就是为什么研究人员开始在工作中使用AI和DL的原因。
AI和DL算法不能提供精确的模拟,也不能替代它们。但是他们可以做的是快速识别大型数据集中的模式,然后创建一个近似于实际行为的计算模型。在某些情况下,使用AI和DL可以消除某些科学上正确的模拟,这些模拟将无济于事,从而极大地加快了研究速度。实际上,许多科学家认为,将AI / DL与仿真相结合是超级计算的未来。
HSLR的Hawk获得GPU
与其他学术研究人员一样,斯图加特超级计算机中心高性能计算中心(HLRS)依赖于基于CPU的计算机执行的HPC仿真。今年,该公司部署了Hawk,这是一款基于AMD EPYC 7742的超级计算机,具有698,800个内核和1,397,760 GB的内存,可以在Rmax Linpack性能上实现19,334 TFLOPS。此外,自2019年以来,研究人员还一直在研究基于GPU的AI超级计算机,当时他们部署了具有60个Nvidia GPU的Cray CS-Storm系统。
责任编辑:lq
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
相关推荐
本篇阅读学习第七、八章,了解GPU架构演进及CPGPU存储体系与线程管理
█从图形到计算的GPU架构演进
GPU图像计算发展
●从三角形开始的几何阶段
在现代图形渲染中,三角形是最常用的基本图形元素
发表于 11-03 12:55
上文结合论文谈一谈,三年寿命的GPU [上]说到,电路腐蚀导致橡树岭实验室的GPU寿命只有3年,更换了11,000块GPU。
发表于 11-01 10:27
•90次阅读
随着大模型的兴起,“GPU算力”这个词正频繁出现在人工智能、游戏、图形设计等工作场景中,什么是GPU,它与CPU的区别是什么?以及到底什么是GPU算力?本篇文章主要从以下5个角度,让您全方位了解
发表于 10-29 08:05
•143次阅读
GPU(图形处理单元)是计算机硬件的重要组成部分,负责处理图形和视频渲染任务。随着技术的发展,GPU在深度学习、游戏、视频编辑等领域扮演着越来越重要的角色。然而,在使用GPU的过程中,我们可能会遇到
发表于 10-27 14:12
•391次阅读
GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习的核心应用领域之一,GPU在加速图像识别模型训练方面发挥着关键作用。通过利用GPU
发表于 10-27 11:13
•277次阅读
超频GPU(图形处理单元)可以提高显卡的性能,但同时也可能增加热量和功耗,甚至可能缩短硬件的寿命。在进行GPU超频之前,确保你了解可能的风险,并且愿意承担这些风险。以下是一些基本的GPU超频设置
发表于 10-27 11:09
•192次阅读
在现代计算领域,GPU(图形处理单元)的作用已经远远超出了传统的图形渲染。从深度学习到科学计算,再到视频编辑,GPU都在发挥着越来越重要的作用。然而,市场上的GPU型号繁多,性能和价格也各不相同
发表于 10-27 11:07
•164次阅读
gpu
jf_02331860
发布于 :2024年07月26日 09:41:42
GPU的出现,基于GPU的渲染获得了很大的普及。这些GPU是特定用途的芯片,在某些情况下提供与CPU渲染相当的结果。从广义上讲,GPU渲染允
发表于 05-23 08:27
•505次阅读
在多 GPU 系统内部,GPU 间通信的带宽通常在数百GB/s以上,PCIe总线的数据传输速率容易成为瓶颈,且PCIe链路接口的串并转换会产生较大延时,影响GPU并行计算的效率和性能。
发表于 03-27 09:40
•3459次阅读
现场可编程门阵列 (FPGA) 解决了 GPU 在运行深度学习模型时面临的许多问题
在过去的十年里,人工智能的再一次兴起使显卡行业受益匪浅。英伟达 (Nvidia) 和 AMD 等公司的股价也大幅
发表于 03-21 15:19
GPU和CPU是两种常见的计算机处理器,它们在结构和功能上有很大的区别。在这篇文章中,我们将探讨GPU和CPU的区别,并详细介绍它们的原理、应用领域和性能特点。 一、概述 1.1 GPU(图形处理器
发表于 02-20 11:24
•1.8w次阅读
流行的GPU/TPU集群网络组网,包括:NVLink、InfiniBand、ROCE以太网Fabric、DDC网络方案等,深入了解它们之间的连接方式以及如何在LLM训练中发挥作用。为了获得良好的训练性能,GPU网络需要满足
发表于 12-25 10:11
•4882次阅读
在计算领域,GPU(图形处理单元)一直是性能飞跃的代表。众所周知,高端GPU的设计充满了挑战。GPU的架构创新,为软件承接大模型训练和推理场景的人工智能计算提供了持续提升的硬件基础。GPU
发表于 12-21 08:28
•825次阅读
虚拟 GPU,也称为 vGPU,是通过将数据中心 GPU 进行虚拟化,用户可在多个虚拟机中共享该 GPU。
发表于 11-10 09:48
•1755次阅读
评论