0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能策略没有达到预期的七个原因

姚小熊27 来源:51cto 作者:51cto 2020-12-24 13:49 次阅读

许多采用人工智能技术的组织不但没有获得成功,反而陷入了与技术目标脱轨的常见陷阱。那么是哪里出了问题?本文介绍了重回正轨的方法。

人工智能(AI)承诺帮助组织提高生产率、业务灵活性和客户满意度,同时缩短将新产品和服务推向市场所需的时间。然而,随着越来越多的IT领导者将他们的组织投入到人工智能科学中,许多组织并没有获得期望的成功。例如,调研机构IDC公司在2020年的一项研究发现,28%的组织的人工智能和机器语言(ML)计划都失败了。

组织创建有效的人工智能策略需要仔细的计划,设定明确的目标,建立强有力的管理承诺,以及能够巧妙地避免常见错误的能力。如果组织当前的人工智能策略没有达到预期的效果,则可能有以下7个原因。

1.员工培训不足

未能充分满足用户需求是阻碍人工智能成功部署的最大障碍之一。

美国佩珀代因(Pepperdine)大学Graziadio商学院信息系统和技术管理教授Charla Griffy-Brown警告说:“除非组织对于使用人工智能解决方案做好准备,否则将无法扩大应用规模。这不仅仅是培训,它需要更新策略并提供业务支持,而不仅仅是技术支持。”

全球IT咨询Infosys公司总裁Ravi Kumar说:“IT领导者必须确保他们的员工得到充分的培训,能够更好地采用人工智能技术。他们应该有一个计划来教育和授权他们的团队与人工智能合作,而不只是使用。”

Grifffy-Brown说:“人工智能需要大家的努力,这一想法应该从一开始就融入到这项计划中。这可能比人工智能本身更难实现。”

2.治理缺失或不足

很多组织没有部署企业范围模型的治理标准,人工智能策略将无法有效运作或扩展。信用评分服务提供商FICO公司首席分析官Scott Zoldi指出,治理建模有很多方面。

他解释说:“它必须包含负责任的人工智能的概念,这一概念应具有健壮性、可解释性、道德性和高效性。该模型还应侧重于标准技术部署实践,并指定哪些人工智能方法可以使用,哪些不可以使用。最后,人工智能项目需要一个受管理的模型开发过程,这样模型就可以按照组织的标准来创建,并且不受数据科学家的技巧影响。”

3.没有理解人工智能的真正价值

专业服务机构埃森哲公司应用智能部门高级董事总经理Lan Guan表示:“随着越来越多的组织能够使用人工智能,许多组织未能充分认识到该技术在现实世界中的投资回报率优势。将人工智能整合到行业应用的核心价值链中,而不是将其视为附加功能,这一点至关重要。当人工智能被无缝嵌入时,其价值追踪变得更加轻松。”

人工智能价值发现路线图与大多数其他企业技术的路线图不同。例如,软件本身就有价值保护策略。

Kumar说:“组织应该很清楚将获得什么价值。由于人工智能缺乏价值保护策略,因此其价值可能是指数级增长。组织通常不了解如何发现人工智能用例的全部范围。此外,企业对人工智能的支持通常集中在针对性的问题或解决特定的挑战上,而不一定考虑如何在整个价值链中使用这一技术。”

4.忽略将人工智能完全嵌入到现有业务流程中

为了让人工智能创造价值,它必须直接嵌入到目标业务流程中。这不仅意味着业务流程需要更改,而且流程中的人员角色也必须适应。

管理咨询机构波士顿咨询集团的高级合伙人兼人工智能联合负责人Shervin Khodabandeh表示:“对于大多数平凡而重复的任务,人工智能可以使整个过程自动化,并使员工摆脱这些任务。”

Khodabandeh指出,完全无需人工的自动化是人工智能的一项重要优势,但只占该技术能够提供的价值的一小部分。他说,“在我们与行业领先组织的研究和合作中,我们发现他们经常利用人工智能推动业务增长,改善客户体验,并更好地管理风险。行业领先的组织通过实施新的人工智能交互模型来实现这一目标。”

而在客户服务方面,不仅仅是人工智能能够做什么,而且是客服人员如何与人工智能技术合作,更好地为客户服务。Khodabandeh解释说,“为了真正采用组织学习,并看到人工智能系统蓬勃发展,组织需要在深入了解必须改变的基础业务流程以及人类和人工智能在新流程中交互的多种可能方式的基础上,启动人工智能计划。”

选择性也很重要。人工智能已经成为IT界的热门技术,组织的首席信息官并不希望在人工智能应用潮流中落后于人。然而,明尼苏达州圣保罗市圣托马斯大学应用人工智能中心主任Manjeet Rege表示,“在采用人工智能技术的过程中,许多IT领导者认为他们必须在应对任何可能的业务挑战时采用人工智能。我们经常看到人工智能部门与业务部门的集成度不高。”

Rege提议组织可以启动一项人工智能计划,该计划将在最初的两到三年内由受到影响的业务部门提供资金。他解释说:“这样,人工智能团队就有足够的时间向业务部门展示人工智能提供的好处,与此同时,各业务部门对人工智能技术产生信心,并愿意在随后的几年中为人工智能项目提供资金。”

5.管理和监测不足

首席信息官通常是提供5个“9”正常运行时间的专家。灌输人工智能的严谨性同样重要,因为使用这项技术做出的决定往往直接影响组织的业务运营。Zoldi说:“确保系统正常运行的严格程度和确保运行人工智能模型的性能,并对其进行持续监控,都需要同样的严格程度。”

Zoldi指出,Corinium Global公司最近发布的一份在不确定性环境中构建人工智能的研究报告,该报告发现67%的首席数据和分析人员没有监控他们的模型,以确保其持续的准确性以及防止模型漂移和偏差。他说:“尽管通常被忽视,但人工智能模型的部署和监控与核心模型开发一样重要,甚至更重要。”

6.缺乏高层管理者支持

许多首席信息官都清楚,有些高级业务代表往往缺乏数据素养。因此,IT领导者应该向他们展示强有力的人工智能策略的影响和收益。

商业和技术咨询机构Capgemini North America公司洞察力和数据执行副总裁Jerry Kurtz表示,如果组织无法从组织高管那里获得全部支持,并且没有正确地对用例进行优先级排序和创新,那么组织将很难扩展其人工智能战略。”他解释说:“如果组织看不到短期投资的长期效益和回报,那么就很难让人们认可这些人工智能战略,以实现长期承诺。”

Kurtz承认,要让高层管理人员相信人工智能是一种行之有效的价值创造技术,这是一项具有挑战性的工作。他说,“组织需要克服这些阻力,但需要精心设计的人工智能战略和路线图,在业务用例识别/优先级确定过程的同时解决数据跟踪问题,并有效解决扩展方面的非技术性障碍。”

7.忽略预算管理

组织需要抵制在人工智能技术采购上花费全部预算的冲动。管理咨询机构Kuroshio consulting公司的执行合伙人兼联合创始人Krishna Kutty建议说,“组织在实施人工智能项目中需要留出资金用于交流、培训、工作流程重新设计和组织结构变更,这是成功的必要条件。”

Kutty指出,许多组织认为,投资于人工智能技术和相关的数据管理任务就足以完成这项工作。这是一个错误。她警告说,“大多数问题都发生在以IT为中心的团队之外,将组织中的运营、财务、人力资源、市场营销等团队都包含在运营和业务模型中,以有效地部署人工智能。高效的首席信息官还要与组织其他高管建立伙伴关系,以确保制定整体的人工智能战略,并在大规模部署人工智能技术方面获得成功。”
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1792

    文章

    47458

    浏览量

    239113
  • 机器语言
    +关注

    关注

    0

    文章

    35

    浏览量

    10765
收藏 人收藏

    评论

    相关推荐

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能的发展历程可以追溯到上世纪50年代,经
    发表于 11-14 16:39

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    幸得一好书,特此来分享。感谢平台,感谢作者。受益匪浅。 在阅读《AI for Science:人工智能驱动科学创新》的第6章后,我深刻感受到人工智能在能源科学领域中的巨大潜力和广泛应用。这一章详细
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    很幸运社区给我一阅读此书的机会,感谢平台。 《AI for Science:人工智能驱动科学创新》第4章关于AI与生命科学的部分,为我们揭示了人工智能技术在生命科学领域中的广泛应用和深远影响。在
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    的发展机遇。同时,这也要求科研人员、政策制定者和社会各界共同努力,构建一健康、包容的AI科研生态系统。 总之,《AI for Science:人工智能驱动科学创新》的第一章为我打开了一全新的视角,让我
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    满足人工智能图像处理中对于高性能、低功耗和特定功能的需求。 低功耗 : 在人工智能图像处理中,低功耗是一重要的考量因素。RISC-V架构的设计使其在处理任务时能够保持较低的功耗水平,这对于需要
    发表于 09-28 11:00

    放大器OPA548的七个针脚与电源和负载是怎么接线的?

    请问:放大器OPA548的七个针脚与电源和负载是怎么接线的?
    发表于 09-23 08:19

    人工智能ai4s试读申请

    目前人工智能在绘画对话等大模型领域应用广阔,ai4s也是方兴未艾。但是如何有效利用ai4s工具助力科研是需要研究的课题,本书对ai4s基本原理和原则,方法进行描诉,有利于总结经验,拟按照要求准备相关体会材料。看能否有助于入门和提高ss
    发表于 09-09 15:36

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    大力发展AI for Science的原因。 第2章从科学研究底层的理论模式与主要困境,以及人工智能三要素(数据、算法、算力)出发,对AI for Science的技术支撑进行解读。 第3章介绍了在
    发表于 09-09 13:54

    报名开启!深圳(国际)通用人工智能大会将启幕,国内外大咖齐聚话AI

    8月28日至30日,2024深圳(国际)通用人工智能大会暨深圳(国际)通用人工智能产业博览会将在深圳国际会展中心(宝安)举办。大会以“魅力AI·无限未来”为主题,致力于打造全球通用人工智能领域集产品
    发表于 08-22 15:00

    生成式人工智能产品大规模应用的七个启示

    尽管微软在构建人工智能应用方面早已制定了一系列原则和流程,以尽最大可能减少意外伤害并为用户提供他们所期望的体验。但是,生成式人工智能产品的大规模应用,无疑也带来了前所未有的新挑战与新机遇。
    的头像 发表于 08-20 10:09 494次阅读

    FPGA在人工智能中的应用有哪些?

    FPGA(现场可编程门阵列)在人工智能领域的应用非常广泛,主要体现在以下几个方面: 一、深度学习加速 训练和推理过程加速:FPGA可以用来加速深度学习的训练和推理过程。由于其高并行性和低延迟特性
    发表于 07-29 17:05

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2)

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V2) 课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https
    发表于 05-10 16:46

    5G智能物联网课程之Aidlux下人工智能开发(SC171开发套件V1)

    课程类别 课程名称 视频课程时长 视频课程链接 课件链接 人工智能 参赛基础知识指引 14分50秒 https://t.elecfans.com/v/25508.html *附件:参赛基础知识指引
    发表于 04-01 10:40

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 :python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17

    AMD上调人工智能芯片销售预期至35亿美元以上

    AMD发布了最新的财报,调高了人工智能芯片业务的业绩预期。根据预测,AMD预计2024年的销售额将增长75%,达到超过35亿美元。
    的头像 发表于 01-31 15:40 670次阅读