0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用深度学习执行文本实体提取

电子设计 来源:电子设计 作者:电子设计 2020-12-25 19:15 次阅读

本文介绍了如何使用深度学习执行文本实体提取。作者尝试了分别使用深度学习和传统方法来提取文章信息,结果深度学习的准确率达到了 85%,远远领先于传统算法的 65%。

引言

文本实体提取是自然语言处理(NLP)的主要任务之一。随着近期深度学习领域快速发展,我们可以将这些算法应用到 NLP 任务中,并得到准确率远超传统方法的结果。我尝试过分别使用深度学习和传统方法来提取文章信息,结果非常惊人:深度学习的准确率达到了 85%,远远领先于传统算法的 65%。

本项目的目标是把文章中的每个单词标注为以下四种类别之一:组织、个人、杂项以及其他;然后找到文中最突出的组织和名称。深度学习模型对每个单词完成上述标注,随后,我们使用基于规则的方法来过滤掉我们不想要的标注,并确定最突出的名称和组织。

在这里要感谢 Guillaume Genthial 这篇关于序列标注的文章(https://guillaumegenthial.github.io/),本项目建立在这篇文章的基础之上。

模型的高级架构

架构

上图是对每个单词进行分类标注的模型高级架构。在建模过程中,最耗时间的部分是单词分类。我将解释模型的每个组成部分,帮助读者对模型组件有一个全面的、更高层次的理解。通常,模型组件可分为三部分:

单词表征:在建模第一步,我们需要做的是加载一些预训练词嵌入(GloVe)。同时,我们需要从字符中提取出一些含义。

语境单词表征:我们需要利用 LSTM,对语境中的每一个单词得到一个有意义的表征。

解码:当我们得到表示单词的向量后,我们就可以用它进行预测。

hot encoding(用数值表示单词)

深度学习算法只接受数值型数据作为输入,而无法处理文本数据。如果想要在大量的非数值场景下使用深度神经网络,就需要将输入数据转变数值形式。这个过程就是 hot encoding。

下面是一小段实现 hot encoding 的代码示例:

word_counts = Counter(words)sorted_vocab = sorted(word_counts, key=word_counts.get, reverse=True)int_to_vocab = {ii: word for ii, word in enumerate(sorted_vocab)}vocab_to_int = {word: ii for ii, word in int_to_vocab.items()}

同样地,我们必须获取输入数据中的所有字符,然后将其转化为向量,作为字符嵌入。

单词嵌入 & 字符嵌入

单词嵌入是处理文本问题时使用的一种通过学习得到的表征方式,其中含义相同的单词表征相近。通常,我们利用神经网络来实现单词嵌入,其中使用的单词或短语来自于词库,并需要转变为实数构成的向量形式。

但是,在数据集上生成词向量计算成本很高,我们可以使用一些预训练的单词嵌入来避免这个问题:比如使用斯坦福大学的 NLP 研究者提供的 GloVe 向量。

字符嵌入是字符的向量表征,可用于推导词向量。之所以会使用字符嵌入,是因为许多实体并没有对应的预训练词向量,所以我们需要用字符向量来计算词向量。

LSTM

传统神经网络 VS 循环神经网络(RNN)

循环神经网络(RNN)是人工神经网络的一种,用于序列数据中的模式识别,例如文本、基因组、手写笔迹、口语词汇,或者来自传感器、股市和政府机构的数值型时间序列数据。它可以「理解」文本的语境含义。

RNN 神经元

LSTM 是一种特殊的循环神经网络,相比于简单的循环神经网络,它可以存储更多的语境信息。简单的 RNN 和 LSTM 之间的主要区别在于它们各自神经元的结构不同。

对于语境中的每一个单词,我们都需要利用 LSTM 得到它在所处语境中的有意义表征。

条件随机场(CRF)

在预测标注最后的解码步骤中,我们可以使用 softmax 函数。当我们使用 softmax 函数时,它给出单词属于每个分类的概率。但这个方法给出的是局部选择;换句话说,即使我们从文本语境中提取出了一些信息,标注决策过程依然是局部的,我们在使用 softmax 激活函数时,并没有使用到邻近单词的标注决策。例如,在「New York」这个词中,我们将「York」标注为一个地方,事实上,这应该可以帮助我们确定『New』对应地方的开始。

在 CRF 中,我们的输入数据是序列数据;同时,我们在某个数据点上进行预测时,需要考虑先前文本的语境。在本项目中,我们使用的是线性链 CRF。在线性链 CRF 中,特征只依赖当前标注和之前的标注,而不是整个句子中的任意标注。

为了对这个行为建模,我们将使用特征函数,该函数包含多个输入值:

句子s

单词在句子中的位置i

当前单词的标注 l_i

前一个单词的标注 l_i?1

接下来,对每一个特征函数 f_j 赋予权重 λ_j。给定一个句子s,现在我们可以根据下式计算s的标注l:对句子中所有单词的加权特征求和。

基于词性标注的特征函数示例

如果 l_i= ADVERB,且第 i 个单词以『-ly』结尾,则 f_1(s,i,l_i,l_i?1)=1,否则取 0。如果对应的权重 λ1 为正,且非常大,那么这个特征基本上就表示我们倾向于把以『-ly』结尾的单词标注为 ADVERB。

如果 i=1,l_i= VERB,且句子以问号结尾,则 f_2(s,i,l_i,l_i?1)=1,否则取 0。如果对应的权重 λ2 为正,且非常大,那么这个特征基本上就表示我们倾向于把疑问句的第一个单词标为 VERB。(例,「Is this a sentence beginning with a verb?」)

如果 l_i?1= ADJECTIVE,且 l_i= NOUN,则 f_3(s,i,l_i,l_i?1)=1,否则为0。对应权重为正时,表示我们倾向于认为名词跟在形容词之后。

如果 l_i?1= PREPOSITION,且 l_i= PREPOSITION,则 f_4(s,i,l_i,l_i?1)=1。此函数对应的权重 λ4 为负,表示介词不应该跟着另一个介词,因此我们应该避免这样的标注出现。

最后,我们可以通过取指数和归一化,将这些得分转换为 0~1 之间的概率 p(l|s)。

总之,要建立一个条件随机场,你只需要定义一组特征函数(可以依赖于整个句子、单词的当前位置和附近单词的标注)、赋予权重,然后加起来,最后如果有需要,转化为概率形式。简单地说,需要做两件事情:

1. 找到得分最高的标注序列;

2. 在全体标注序列上求出概率分布。

幸运的是,TensorFlow 提供了相关的库,帮助我们可以很容易地实现 CRF。

log_likelihood, transition_params=tf.contrib.crf.crf_log_likelihood(scores, labels, sequence_lengths)

模型的运行原理

对于每一个单词,我们希望建立一个向量来捕捉其意义以及和任务相关的特征。我们将该向量构建为 GloVe 单词嵌入与包含字符级特征的向量的级联。我们还可以选择使用一些特定的神经网络,自动提取出这些特征。在本文中,我们将在字符层面上使用双向 LSTM 算法。

我们将 CONLL 数据集中的所有单词都进行 hot-encode,这些单词都在 GloVe 单词嵌入中有对应的实体。如上文所述,神经网络只接受向量,不接受文本,因此我们需要将单词转换为向量。CONLL 数据集包含单词及其对应标注。在 hot encoding 后,单词和标注都被转换成了向量。

用于 hot encoding 单词及其对应标注的代码:

with open(self.filename) as f: words, tags = [], [] for line in f: line = line.strip() if (len(line) == 0 or line.startswith("-DOCSTART-")): if len(words) != 0: niter += 1 if self.max_iter is not None and niter > self.max_iter: break yield words, tags words, tags = [], [] else: ls = line.split(' ') word, tag = ls[0],ls[-1] if self.processing_word is not None: word = self.processing_word(word) if self.processing_tag is not None: tag = self.processing_tag(tag) words += [word] tags += [tag]

用于提取单词、标注和字符向量的代码:

if vocab_chars is not None and chars == True: char_ids = [] for char in word: # ignore chars out of vocabulary if char in vocab_chars: char_ids += [vocab_chars[char]]if lowercase: word = word.lower()if word.isdigit(): word = NUMif vocab_words is not None: if word in vocab_words: word = vocab_words[word] else: if allow_unk: word = vocab_words[UNK] else: print(word) print(vocab_words)if vocab_chars is not None and chars == True: return char_ids, wordelse: return word

现在,我们使用 TensorFlow 内置的函数加载单词嵌入。假定 embeddings 是一个 GloVe 嵌入的 numpy 数组,其中 embeddings[i] 表示第 i 个单词的向量形式。

L = tf.Variable(embeddings, dtype=tf.float32, trainable=False)pretrained_embeddings = tf.nn.embedding_lookup(L, word_ids)

现在,我们可以构建根据字符得到的单词嵌入。这里,我们不需要任何预训练字符嵌入。

_char_embeddings = tf.get_variable( nam, dtype=tf.float32, shape=[self.config.nchars, self.config.dim_char])char_embeddings = tf.nn.embedding_lookup(_char_embeddings, self.char_ids_tensor, nam)s = tf.shape(char_embeddings)char_embeddings = tf.reshape(char_embeddings, shape=[s[0]*s[1], s[-2], self.config.dim_char])word_lengths = tf.reshape(self.word_lengths_tensor, shape=[s[0]*s[1]])cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char, state_is_tuple=True)cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char, state_is_tuple=True)_output = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, char_embeddings, sequence_length=word_lengths, dtype=tf.float32)

一旦得到了单词表征,我们就可以直接在词向量序列上运行 bi-LSTM,得到另一个向量序列。

cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm)cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm)(output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, self.word_embeddings, sequence_length=self.sequence_lengths_tensor, dtype=tf.float32)output = tf.concat([output_fw, output_bw], axis=-1)output = tf.nn.dropout(output, self.dropout_tensor)

现在,每个单词都和一个向量对应,其中向量记录了这个单词的含义、字符和语境。我们使用向量来做最后的预测。我们可以使用全连接神经网络求出一个向量,该向量中每个条目对应每个标注的得分。

W = tf.get_variable("W", dtype=tf.float32, shape=[2*self.config.hidden_size_lstm, self.config.ntags])b = tf.get_variable("b", shape=[self.config.ntags], dtype=tf.float32, initializer=tf.zeros_initializer())nsteps = tf.shape(output)[1]output = tf.reshape(output, [-1, 2*self.config.hidden_size_lstm])pred = tf.matmul(output, W) + bself.logits = tf.reshape(pred, [-1, nsteps, self.config.ntags])

最后,我们使用 CRF 方法来计算每个单词的标注。实现 CRF 只需要一行代码!下面的代码计算出了损失,同时返回了在预测时很有用的 trans_params。

log_likelihood, _trans_params = tf.contrib.crf.crf_log_likelihood(self.logits, self.labels_tensor, self.sequence_lengths_tensor)self.trans_params = _trans_paramsself.loss = tf.reduce_mean(-log_likelihood)

现在,我们可以定义我们的训练算子:

optimizer = tf.train.AdamOptimizer(self.lr_tensor)self.train_op = optimizer.minimize(self.loss)

一旦我们定义好模型,在数据集上完成很少的几次迭代,就可以得到训练好的模型了。

如何使用训练好的模型

TensorFlow 提供了存储模型权重的功能,这样我们就可以在之后的场景中复原训练好的模型。无论什么时候需要进行预测,我们都可以加载模型权重,这样就不需要重新训练了。

def save_session(self): """Saves session = weights""" if not os.path.exists(self.config.dir_model): os.makedirs(self.config.dir_model) self.saver.save(self.sess, self.config.dir_model)def restore_session(self, dir_model): self.saver.restore(self.sess, dir_model)

每篇文章都被分解为单词再输入到模型中,然后经过上文所述一系列过程,得到输出结果。模型最终输出结果将每个单词分为 4 类:组织、个人、杂项以及其他。这个算法通过基于规则的方法过滤结果,然后进一步正确提取出文本中最突出的名称和组织,它并没有达到 100% 的准确率。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100890
  • 智能计算
    +关注

    关注

    0

    文章

    179

    浏览量

    16505
  • 工业物联网
    +关注

    关注

    25

    文章

    2379

    浏览量

    64442
收藏 人收藏

    评论

    相关推荐

    NPU在深度学习中的应用

    设计的硬件加速器,它在深度学习中的应用日益广泛。 1. NPU的基本概念 NPU是一种专门针对深度学习算法优化的处理器,它与传统的CPU和GPU有所不同。NPU通常具有高度并行的处理能
    的头像 发表于 11-14 15:17 690次阅读

    如何使用 Llama 3 进行文本生成

    使用LLaMA 3(Large Language Model Family of AI Alignment)进行文本生成,可以通过以下几种方式实现,取决于你是否愿意在本地运行模型或者使用现成的API
    的头像 发表于 10-27 14:21 448次阅读

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 415次阅读

    AI大模型与深度学习的关系

    AI大模型与深度学习之间存在着密不可分的关系,它们互为促进,相辅相成。以下是对两者关系的介绍: 一、深度学习是AI大模型的基础 技术支撑 :深度
    的头像 发表于 10-23 15:25 905次阅读

    labview怎么生成可执行文

    生成可执行文件(EXE)是LabVIEW程序开发中的一个重要步骤,它允许用户将LabVIEW项目打包成一个独立的应用程序,便于在没有安装LabVIEW的计算机上运行。 1. 准备工作 在开始生成
    的头像 发表于 09-04 17:07 1091次阅读

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    的信息,提供更全面的上下文理解。这使得模型能够更准确地理解复杂问题中的多个层面和隐含意义。 2. 语义分析 模型通过训练学习到语言的语义特征,能够识别文本中的命名实体、句法结构和语义关系等信息。这些
    发表于 08-02 11:03

    如何学习智能家居?8:Text文本实体使用方法

    没来得及给大家写使用教程! 不过在写教程之前,有必要给大家看看上周的成果: Text 实体介绍 Text 实体,也就是文本实体,它支持在 HomeAssistant 输入文字之后,通过
    的头像 发表于 07-15 14:06 1610次阅读
    如何<b class='flag-5'>学习</b>智能家居?8:Text<b class='flag-5'>文本</b><b class='flag-5'>实体</b>使用方法

    深度学习中的时间序列分类方法

    的发展,基于深度学习的TSC方法逐渐展现出其强大的自动特征提取和分类能力。本文将从多个角度对深度学习在时间序列分类中的应用进行综述,探讨常用
    的头像 发表于 07-09 15:54 1028次阅读

    深度学习在视觉检测中的应用

    深度学习是机器学习领域中的一个重要分支,其核心在于通过构建具有多层次的神经网络模型,使计算机能够从大量数据中自动学习提取特征,进而实现对复
    的头像 发表于 07-08 10:27 753次阅读

    深度学习与nlp的区别在哪

    方法,它通过模拟人脑的神经网络结构,实现对数据的自动特征提取学习深度学习的核心是构建多层的神经网络结构,每一层都包含大量的神经元,这些神经元通过权重连接,实现对输入数据的逐层抽象和
    的头像 发表于 07-05 09:47 973次阅读

    人工智能深度学习的五大模型及其应用领域

    随着科技的飞速发展,人工智能(AI)技术特别是深度学习在各个领域展现出了强大的潜力和广泛的应用价值。深度学习作为人工智能的一个核心分支,通过模拟人脑神经网络的结构和功能,实现了对复杂数
    的头像 发表于 07-03 18:20 4686次阅读

    卷积神经网络在文本分类领域的应用

    在自然语言处理(NLP)领域,文本分类一直是一个重要的研究方向。随着深度学习技术的飞速发展,卷积神经网络(Convolutional Neural Network,简称CNN)在图像识别领域取得了
    的头像 发表于 07-01 16:25 749次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度学习技术,使得
    发表于 04-23 17:18 1320次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    为什么深度学习的效果更好?

    导读深度学习是机器学习的一个子集,已成为人工智能领域的一项变革性技术,在从计算机视觉、自然语言处理到自动驾驶汽车等广泛的应用中取得了显著的成功。深度
    的头像 发表于 03-09 08:26 639次阅读
    为什么<b class='flag-5'>深度</b><b class='flag-5'>学习</b>的效果更好?

    【技术科普】主流的深度学习模型有哪些?AI开发工程师必备!

    深度学习在科学计算中获得了广泛的普及,其算法被广泛用于解决复杂问题的行业。所有深度学习算法都使用不同类型的神经网络来执行特定任务。 什么是
    的头像 发表于 01-30 15:26 643次阅读
    【技术科普】主流的<b class='flag-5'>深度</b><b class='flag-5'>学习</b>模型有哪些?AI开发工程师必备!