当今科技发展速度飞快,想让用户在AR/VR、机器人、无人机、无人驾驶领域体验加强,还是需要更多前沿技术做支持,SLAM就是其中之一。实际上,有人就曾打比方,若是手机离开了WIFI和数据网络,就像无人车和机器人,离开了SLAM一样。
什么是SLAM
SLAM的英文全称是Simultaneous Localization and Mapping,中文称作“同时定位与地图创建”。
SLAM试图解决这样的问题:一个机器人在未知的环境中运动,如何通过对环境的观测确定自身的运动轨迹,同时构建出环境的地图。SLAM技术正是为了实现这个目标涉及到的诸多技术的总和。
SLAM通常包括如下几个部分,特征提取,数据关联,状态估计,状态更新以及特征更新等。
我们引用知乎上的一个解释把它翻译成大白话,就是:
当你来到一个陌生的环境时,为了迅速熟悉环境并完成自己的任务(比如找饭馆,找旅馆),你应当做以下事情:
a.用眼睛观察周围地标如建筑、大树、花坛等,并记住他们的特征(特征提取)
b.在自己的脑海中,根据双目获得的信息,把特征地标在三维地图中重建出来(三维重建)
c.当自己在行走时,不断获取新的特征地标,并且校正自己头脑中的地图模型(bundleadjustmentorEKF)
d.根据自己前一段时间行走获得的特征地标,确定自己的位置(trajectory)
e.当无意中走了很长一段路的时候,和脑海中的以往地标进行匹配,看一看是否走回了原路(loop-closuredetection)。实际这一步可有可无。
以上五步是同时进行的,因此是simultaneous localization and mapping。
传感器与视觉SLAM框架
智能机器人技术在世界范围内得到了大力发展。人们致力于把机器人用于实际场景:从室内的移动机器人,到野外的自动驾驶汽车、空中的无人机、水下环境的探测机器人等等,均得到了广泛的关注。
没有准确的定位与地图,扫地机就无法在房间自主地移动,只能随机乱碰;家用机器人就无法按照指令准确到达某个房间。此外,在虚拟现实(VirtualReality)和增强现实技术(ArgumentReality)中,没有SLAM提供的定位,用户就无法在场景中漫游。在这几个应用领域中,人们需要SLAM向应用层提供空间定位的信息,并利用SLAM的地图完成地图的构建或场景的生成。
当我们谈论SLAM时,最先问到的就是传感器。SLAM的实现方式与难度和传感器的形式与安装方式密切相关。传感器分为激光和视觉两大类,视觉下面又分三小方向。下面就带你认识这个庞大家族中每个成员的特性。
1.传感器之激光雷达
激光雷达是最古老,研究也最多的SLAM传感器。它们提供机器人本体与周围环境障碍物间的距离信息。常见的激光雷达,例如SICK、Velodyne还有我们国产的rplidar等,都可以拿来做SLAM。激光雷达能以很高精度测出机器人周围障碍点的角度和距离,从而很方便地实现SLAM、避障等功能。
主流的2D激光传感器扫描一个平面内的障碍物,适用于平面运动的机器人(如扫地机等)进行定位,并建立2D的栅格地图。这种地图在机器人导航中很实用,因为多数机器人还不能在空中飞行或走上台阶,仍限于地面。在SLAM研究史上,早期SLAM研究几乎全使用激光传感器进行建图,且多数使用滤波器方法,例如卡尔曼滤波器与粒子滤波器等。
激光的优点是精度很高,速度快,计算量也不大,容易做成实时SLAM。缺点是价格昂贵,一台激光动辄上万元,会大幅提高一个机器人的成本。因此激光的研究主要集中于如何降低传感器的成本上。对应于激光的EKF-SLAM理论方面,因为研究较早,现在已经非常成熟。与此同时,人们也对EKF-SLAM的缺点也有较清楚的认识,例如不易表示回环、线性化误差严重、必须维护路标点的协方差矩阵,导致一定的空间与时间的开销,等等。
2.、传感器之视觉SLAM
视觉SLAM是21世纪SLAM研究热点之一,一方面是因为视觉十分直观,不免令人觉得:为何人能通过眼睛认路,机器人就不行呢?另一方面,由于CPU、GPU处理速度的增长,使得许多以前被认为无法实时化的视觉算法,得以在10Hz以上的速度运行。硬件的提高也促进了视觉SLAM的发展。
以传感器而论,视觉SLAM研究主要分为三大类:单目、双目(或多目)、RGBD。其余还有鱼眼、全景等特殊相机,但是在研究和产品中都属于少数。此外,结合惯性测量器件(InertialMeasurementUnit,IMU)的视觉SLAM也是现在研究热点之一。就实现难度而言,我们可以大致将这三类方法排序为:单目视觉>双目视觉>RGBD。
单目相机SLAM简称MonoSLAM,即只用一支摄像头就可以完成SLAM。这样做的好处是传感器特别的简单、成本特别的低,所以单目SLAM非常受研究者关注。相比别的视觉传感器,单目有个最大的问题,就是没法确切地得到深度。这是一把双刃剑。
一方面,由于绝对深度未知,单目SLAM没法得到机器人运动轨迹以及地图的真实大小。直观地说,如果把轨迹和房间同时放大两倍,单目看到的像是一样的。因此,单目SLAM只能估计一个相对深度,在相似变换空间Sim(3)中求解,而非传统的欧氏空间SE(3)。如果我们必须要在SE(3)中求解,则需要用一些外部的手段,例如GPS、IMU等传感器,确定轨迹与地图的尺度(Scale)。
另一方面,单目相机无法依靠一张图像获得图像中物体离自己的相对距离。为了估计这个相对深度,单目SLAM要靠运动中的三角测量,来求解相机运动并估计像素的空间位置。即是说,它的轨迹和地图,只有在相机运动之后才能收敛,如果相机不进行运动时,就无法得知像素的位置。同时,相机运动还不能是纯粹的旋转,这就给单目SLAM的应用带来了一些麻烦,好在日常使用SLAM时,相机都会发生旋转和平移。不过,无法确定深度同时也有一个好处:它使得单目SLAM不受环境大小的影响,因此既可以用于室内,又可以用于室外。
-
传感器
+关注
关注
2551文章
51134浏览量
753846 -
mems
+关注
关注
129文章
3934浏览量
190681
发布评论请先 登录
相关推荐
评论