0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多光子显微镜成像技术:用于体内神经元成像的多种技术

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:19 次阅读

与传统的单光子宽视野荧光显微镜相比,多光子显微镜(MPM)具有光学切片和深层成像等功能,这两个优势极大地促进了研究者们对于完整活体大脑深处神经的了解与认识。2019年,Jerome Lecoq等人从大脑深处的神经元成像、大量神经元成像、高速神经元成像这三个方面论述了相关的MPM技术[1]。

想要将神经元活动与复杂行为联系起来,通常需要对大脑皮质深层的神经元进行成像,这就要求MPM具有深层成像的能力。激发和发射光会被生物组织高度散射和吸收是限制MPM成像深度的主要因素,虽然可以通过增加激光强度来解决散射问题,但这会带来其他问题,例如烧坏样品、离焦和近表面荧光激发。增加MPM成像深度最好的方法是用更长的波长作为激发光。

另外,对于双光子(2P)成像而言,离焦和近表面荧光激发是两个最大的深度限制因素,而对于三光子(3P)成像这两个问题大大减小,但是三光子成像由于荧光团的吸收截面比2P要小得多,所以需要更高数量级的脉冲能量才能获得与2P激发的相同强度的荧光信号。功能性3P显微镜比结构性3P显微镜的要求更高,它需要更快速的扫描,以便及时采样神经元活动;需要更高的脉冲能量,以便在每个像素停留时间内收集足够的信号。

复杂的行为通常涉及到大型的大脑神经网络,该网络既具有局部的连接又具有远程的连接。要想将神经元活动与行为联系起来,需要同时监控非常庞大且分布广泛的神经元的活动,大脑中的神经网络会在几十毫秒内处理传入的刺激,要想了解这种快速的神经元动力学,就需要MPM具备对神经元进行快速成像的能力。快速MPM方法可分为单束扫描技术和多束扫描技术。

单束扫描技术可以高速遍历大视场(FOV)的神经组织

使用MPM对神经元进行成像时,通过随机访问扫描—即激光束在整个视场上的任意选定点上进行快速扫描—可以只扫描感兴趣的神经元,这样不仅避免扫描到任何未标记的神经纤维,还可以优化激光束的扫描时间。随机访问扫描(图1)可以通过声光偏转器(AOD)来实现,其原理是将具有一个射频信号的压电传感器粘在合适的晶体上,所产生的声波引起周期性的折射率光栅,激光束通过光栅时发生衍射。通过射频电信号调控声波的强度和频率从而可以改变衍射光的强度和方向,这样使用1个AOD就可以实现一维横向的任意点扫描,利用1对AOD,结合其他轴向扫描技术可实现3D的随机访问扫描。但是该技术对样本的运动很敏感,易出现运动伪影。目前,快速光栅扫描即在FOV中进行逐行扫描,由于利用算法可以轻松解决运动伪影而被广泛的使用。

图1 基于AOD的体内新皮层L2 / 3神经元的双光子成像[2]

快速光栅扫描有多种实现方式,使用振镜进行快速2D扫描,将振镜和可调电动透镜结合在一起进行快速3D扫描,但可调电动透镜由于机械惯性的限制在轴向无法快速进行焦点切换,影响成像速度,现可使用空间光调制器(SLM)代替。

远程聚焦也是一种实现3D成像的手段,如图2所示。在LSU模块中,扫描振镜进行横向扫描, ASU模块包括物镜L1和反射镜M,通过调控M的位置实现轴向扫描。该技术不仅可以校正主物镜L2引入的光学像差,还可以进行快速的轴向扫描。想要获得更多神经元成像,可以通过调整显微镜的物镜设计来扩大FOV,但是具有大NA和大FOV的物镜通常重量较大,无法快速移动以进行快速轴向扫描,因此大型FOV系统依赖于远程聚焦、SLM和可调电动透镜。

图2 远程聚焦双光子成像系统的示意图[3]多束扫描技术可以同时对神经元组织的不同位置进行成像

该技术如图3所示。对两个远距离(相距大于1-2 mm)的成像部位,通常使用两条独立的路径进行成像(图3C,D);对于相邻区域,通常使用单个物镜的多光束进行成像(图3E,F)。多光束扫描技术必须特别注意激发光束之间的串扰问题,这个问题可以通过事后光源分离方法或时空复用方法来解决。事后光源分离方法指的是用算法来分离光束消除串扰;时空复用方法指的是同时使用多个激发光束,每个光束的脉冲在时间上延迟,这样就可以暂时分离被不同光束激发的单个荧光信号。引入越多路光束就可以对越多的神经元进行成像,但是多路光束会导致荧光衰减时间的重叠增加,从而限制了区分信号源的能力;并且多路复用对电子设备的工作速率有很高的要求;大量的光束也需要更高的激光功率来维持近似单光束的信噪比,这会容易导致组织损伤。

图3 大面积成像技术

近年来,不同的MPM技术的发展拓宽了我们对神经组织的成像范围,使得我们可以以更快的速度对大脑深处更多的神经元进行成像,这大大推动了神经科学的研究,使我们能够对脑功能有更清晰的理解。

审核编辑:符乾江


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    288

    浏览量

    31429
  • 显微镜
    +关注

    关注

    0

    文章

    537

    浏览量

    22967
收藏 人收藏

    评论

    相关推荐

    傅里叶光场显微成像技术—2D显微镜实现3D成像

    近年来,光场显微技术的应用越来越广泛,针对光场显微镜的改进和优化也不断出现。目前市场各大品牌的2D显微镜比比皆是,如何在其基础上实现三维成像
    的头像 发表于 10-31 08:05 235次阅读
    傅里叶光场<b class='flag-5'>显微</b><b class='flag-5'>成像</b><b class='flag-5'>技术</b>—2D<b class='flag-5'>显微镜</b>实现3D<b class='flag-5'>成像</b>

    分析共聚焦激光显微镜成像的常见问题

    共聚焦激光显微镜(CLSM)因其高分辨率和三维成像能力而在生物医学研究中被广泛使用。然而,在使用过程中,研究人员可能会遇到各种技术挑战。 一、样品制备问题 1. 样品厚度 共聚焦显微镜
    的头像 发表于 10-30 09:45 189次阅读

    共聚焦激光显微镜对比超分辨显微镜

    显微镜技术的发展极大地推动了科学研究的进步,尤其是在细胞生物学和纳米科学领域。共聚焦激光显微镜(CLSM)和超分辨显微镜作为两种重要的显微
    的头像 发表于 10-30 09:42 211次阅读

    共聚焦激光显微镜的光学系统解析

    。 引言 共聚焦激光显微镜是一种广泛应用于生物医学、材料科学和纳米技术等领域的显微成像技术。它通
    的头像 发表于 10-30 09:40 481次阅读

    共聚焦激光显微镜工作原理

    细微的结构和动态过程。 共聚焦激光显微镜的基本原理 共聚焦激光显微镜的核心在于“共焦”技术。这一技术利用点光源(通常是激光)和特殊的光学系统,使得
    的头像 发表于 10-30 09:27 235次阅读

    光子显微成像激光调制解决方案

    技术的巨变中受益。 这些改进进一步推动了这种最初从物理实验室中开发的技术向细胞生物学、疾病研究和高级神经科学成像领域的渗透。 一体式可调谐钛宝石激光器在 2001 年左右开始了这一趋势。几年后,激光器中增加了自动色散控制功能,以
    的头像 发表于 09-23 06:28 135次阅读
    双<b class='flag-5'>光子</b><b class='flag-5'>显微</b><b class='flag-5'>成像</b>激光调制解决方案

    什么是散射成像技术?

    的发展,而且在解决散射成像方面表现出了得天独厚的优势。 在弹道光提取方面,自适应光学成像技术、光学相干层析技术、共聚焦显微
    的头像 发表于 08-23 06:25 189次阅读
    什么是散射<b class='flag-5'>成像</b><b class='flag-5'>技术</b>?

    具有非常高数值孔径的反射显微镜系统

    摘要 在单分子显微镜成像应用中,定位精度是一个关键问题。由于在某一方向上的定位精度与图像在同一方向上的点扩散函数(point spread function, PSF)的宽度成正比,因此具有较高
    发表于 08-14 11:52

    共聚焦显微镜成像原理、功能、分辨率与优势解析

    在材料科学和精密工程领域,对微观结构的精确测量和分析至关重要。共聚焦显微镜作为一种高精度的成像技术,为这些领域提供了强大的工具。共聚焦显微镜成像
    的头像 发表于 06-14 09:28 1396次阅读
    共聚焦<b class='flag-5'>显微镜</b>:<b class='flag-5'>成像</b>原理、功能、分辨率与优势解析

    光子显微镜探究斑马鱼的社会行为

    图 1:多伦多大学所用光子显微镜系统中包括可调谐 激光器 (Coherent Discovery) 和固定波长激光器 (Coherent Axon),可节省宝贵的平台空间,同时改善成像
    的头像 发表于 05-22 06:39 188次阅读
    <b class='flag-5'>多</b><b class='flag-5'>光子</b><b class='flag-5'>显微镜</b>探究斑马鱼的社会行为

    共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。在它用于精确测量样品的尺寸、形状、表面粗糙度或其他物理特性时,能够提供非常精确的三维形貌图像,这使得它成为测量样品表面特征的强大工
    发表于 05-14 10:43 3次下载

    显微成像与精密测量:共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。能够进行二维和三维成像,是光学显微镜技术
    的头像 发表于 05-11 11:38 772次阅读
    <b class='flag-5'>显微</b><b class='flag-5'>成像</b>与精密测量:共聚焦、光学<b class='flag-5'>显微镜</b>与测量<b class='flag-5'>显微镜</b>的区分

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    用于材料科学领域的共聚焦显微镜,基于光学共轭共焦原理,其超高的空间分辨率和三维成像能力,提供了全新的视角和解决方案。工作原理共聚焦显微镜通过在样品的焦点处聚焦激光束,在样品表面进行快速
    发表于 02-20 09:07 1次下载

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    共聚焦显微镜在材料学领域应用广泛,通过超高分辨率的三维显微成像测量,可清晰观察材料的表面形貌、表层结构和纳米尺度的缺陷,有助于理解材料的微观特性和材料工程设计。
    的头像 发表于 02-18 10:53 498次阅读
    <b class='flag-5'>显微</b>测量|共聚焦<b class='flag-5'>显微镜</b>大倾角超清纳米三维<b class='flag-5'>显微</b><b class='flag-5'>成像</b>

    共聚焦显微镜应用特点

    共聚焦显微镜具有高分辨率和高灵敏度的特点,适用于多种不同样品的成像和分析,能够产生结果和图像清晰,易于分析。这些特性使共聚焦显微镜成为现代科
    发表于 11-21 09:21 0次下载