0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

UCR学者用漩涡实现混合计算机视觉系统

新机器视觉 来源:机器之心 作者:机器之心 2020-12-31 09:29 次阅读

在本文中,来自加州大学河滨分校机械工程系的研究者通过应用光学漩涡证明了混合计算机视觉系统的可行性。该研究为光子学在构建通用的小脑混合神经网络和开发用于大数据分析的实时硬件方面的作用提供了新见解。

从医学诊断到自动驾驶再到人脸识别,图像分析在现代技术中无处不在。使用深度学习卷积神经网络的计算机彻底改变了计算机视觉。但卷积神经网络(convolutional neural network,CNN)通过从预训练数据中学习来对图像进行分类,然而这些数据通常会记住或发展某些偏见。此外,数据还易于受到对抗性攻击(以极细微且几乎察觉不到的图像扭曲出现)的干扰,从而导致做出错误的决策。这些缺点限制了卷积神经网络的用途。 提升图像处理算法能效和可靠性的一种方法是将常规计算机视觉与光学预处理器结合起来。这种混合系统可以用最少的电子硬件工作。由于光在预处理阶段即可完成数学函数而不会耗散能量,因此使用混合计算机视觉系统可以节省大量时间和能源。这种新方法能够克服深度学习的缺点,并充分利用光学和电子学的优势。

今年 8 月份,在一篇发表于 Optica 的论文中,加州大学河滨分校机械工程系助理教授 Luat Vuong 和博士生 Baurzhan Muminov 通过应用光学漩涡(具有深色中心点的旋绕光波),证明了混合计算机视觉系统的可行性。光学漩涡可以比喻为光绕着边缘和角落传播时产生的流体动力漩涡。

论文链接:https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-7-9-1079&id=437484 研究表明,光学预处理可以降低图像计算的功耗,而电子设备中的数字信号识别相关性,提供优化并快速计算可靠的决策阈值。借助混合计算机视觉,光学器件具有速度和低功耗计算的优势,并且比 CNN 的时间成本降低了 2 个数量级。通过图像压缩,则有可能从存储和计算复杂性两方面大幅减少电子后端硬件。 Luat Vuong 表示:「本研究中的漩涡编码器表明,光学预处理可以消除对 CNN 的需求,比 CNN 更具鲁棒性,并且能够泛化逆问题的解决方法。

例如当混合神经网络学习手写数字的形状时,它可以重建以前从未见过的阿拉伯或日语字符。」 该论文还表明,将图像缩小为更少的高强度像素能够实现极弱光线条件下的图像处理。该研究为光子学在构建通用的小脑混合神经网络和开发用于大数据分析的实时硬件方面的作用提供了新见解。 论文内容简述 深度学习卷积神经网络通常涉及具有较高计算成本的多层、前向 - 后向传播机器学习算法。所以,在本文中,研究者展示了卷积神经网络的替代方案,该方案从其光学预处理、傅里叶编码模式中重建原始图像。该方案对计算的需求少得多,并且具有更高的噪声鲁棒性,因此适用于高速和弱光照条件下的成像。 具体而言,该研究引入带有微透镜阵列的漩涡相位变换,以及浅层密集的「小脑」神经网络结合。单次编码孔径方法利用了傅里叶变换螺旋相位梯度的相干衍射、紧凑表征和边缘增强。使用漩涡编码可以训练小脑对图像进行去卷积操作,其速度比使用随机编码方案快 5 至 20 倍,且在存在噪声的情况下获得了更大的优势。

一旦训练完成,小脑就可以从 intensity-only 的数据中重建对象,从而解决了逆映射问题,而无需在每个图像上执行迭代,也无需深度学习方案。通过漩涡傅立叶编码,研究者在 15W CPU 上以每秒几千帧的速度重建以低光通量(5nJ / cm^2)照明的 MNIST Fashion 对象。最终,研究者证明了使用漩涡编码器进行傅立叶光学预处理在达到相似准确率的情况下,速度比卷积神经网络快 2 个数量级。 漩涡的知识可以扩展为理解任意波型。当带有漩涡时,光学图像数据会以突出显示并混合光学图像不同部分的方式实现传播。研究者指出,使用浅层「小脑」神经网络进行的漩涡图像预处理(仅需运行几层算法)就可以代替 CNN 发挥作用。 Vuong 还表示:「光学漩涡的独特优势在于其数学和边缘增强功能。在本文中,我们证明了,光学漩涡编码器能够以类似于一种小脑神经网络从其光学预处理模式快速重建原始图像的方式生成目标强度数据。」 方法

图 1 描述了该研究的成像方案,其中对象 F(r,Φ) 的多个图像被收集到傅立叶域中:透过每个微透镜的光由不同的漩涡和透镜 mask 模式 M_m(r,Φ) 调制;摄像机检测到菲涅耳(Fresnel)传播、漩涡傅里叶变换(vortex-Fourier-transformed)强度模式的缩放模平方图像

。 其中,m 是漩涡拓扑电荷,r 和Φ是实域柱面坐标,而 u 和 v 是傅里叶平面笛卡尔坐标。漩涡傅里叶强度模式 F^~ 集中在相对较小的区域中,但随着 m 的增加,通常会呈越来越宽的甜甜圈形(图 1(b))。对象「实域」中的漩涡相位在空间上编码并破坏了傅立叶变换强度模式的平移不变性,如图 1(c) 所示。 此外,该研究将一些小图像数据集视为对象输入,并比较 F(r,Φ) 中的不同表征。对于每个正实值数据集图像 X,相位变化的映射如下公式所示:

其中,α_0 是对象相位移动的动态范围。这种映射很方便,因为信号功率不随选择的 X 改变。研究者还考虑了 X 闭塞或吸收信号时不透明对象,即,这会产生相似的趋势。 归根结底,该研究有三项主要创新:(1)用漩涡透镜进行光谱特征的边缘增强;(2)在没有相似学得数据集的情况下对图像进行快速逆重建;(3)取决于层激活的抗噪声能力。

原文标题:光学预处理与计算机视觉结合,UCR学者用漩涡实现混合计算机视觉系统

文章出处:【微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4773

    浏览量

    100882
  • 计算机
    +关注

    关注

    19

    文章

    7515

    浏览量

    88176
  • 机器视觉
    +关注

    关注

    162

    文章

    4386

    浏览量

    120426

原文标题:光学预处理与计算机视觉结合,UCR学者用漩涡实现混合计算机视觉系统

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    ARMxy嵌入式计算机在机器视觉中的卓越表现

    嵌入式视觉是指在嵌入式系统中使用计算机视觉技术,与经常所说的机器视觉系统的区别在于嵌入式视觉系统
    的头像 发表于 10-10 14:47 266次阅读
    ARMxy嵌入式<b class='flag-5'>计算机</b>在机器<b class='flag-5'>视觉</b>中的卓越表现

    计算机视觉有哪些优缺点

    计算机视觉作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像和视频中的信息。这一技术的发展不仅推动了多个行业的变革,也带来了诸多优势,但同时也伴随着一些挑战和局限性。以下是对
    的头像 发表于 08-14 09:49 1010次阅读

    计算机视觉技术的AI算法模型

    计算机视觉技术作为人工智能领域的一个重要分支,旨在使计算机能够像人类一样理解和解释图像及视频中的信息。为了实现这一目标,计算机
    的头像 发表于 07-24 12:46 936次阅读

    机器视觉计算机视觉有什么区别

    机器视觉计算机视觉是两个密切相关但又有所区别的概念。 一、定义 机器视觉 机器视觉,又称为计算机
    的头像 发表于 07-16 10:23 556次阅读

    计算机视觉的五大技术

    计算机视觉作为深度学习领域最热门的研究方向之一,其技术涵盖了多个方面,为人工智能的发展开拓了广阔的道路。以下是对计算机视觉五大技术的详细解析,包括图像分类、对象检测、目标跟踪、语义分割
    的头像 发表于 07-10 18:26 1419次阅读

    计算机视觉的工作原理和应用

    计算机视觉(Computer Vision,简称CV)是一门跨学科的研究领域,它利用计算机和数学算法来模拟人类视觉系统对图像和视频进行识别、理解、分析和处理。其核心目标在于使
    的头像 发表于 07-10 18:24 2069次阅读

    计算机视觉与人工智能的关系是什么

    、交流等方面。计算机视觉与人工智能之间存在着密切的联系,计算机视觉是人工智能的一个重要分支,也是实现人工智能的关键技术之一。
    的头像 发表于 07-09 09:25 683次阅读

    计算机视觉与智能感知是干嘛的

    引言 计算机视觉(Computer Vision)是一门研究如何使计算机能够理解和解释视觉信息的学科。它涉及到图像处理、模式识别、机器学习等多个领域,是人工智能的重要组成部分。智能
    的头像 发表于 07-09 09:23 968次阅读

    计算机视觉和机器视觉区别在哪

    ,旨在实现对图像和视频的自动分析和理解。 机器视觉 机器视觉计算机视觉的一个分支,主要应用于工业自动化领域。它利用
    的头像 发表于 07-09 09:22 467次阅读

    计算机视觉和图像处理的区别和联系

    计算机视觉和图像处理是两个密切相关但又有明显区别的领域。 1. 基本概念 1.1 计算机视觉 计算机视觉
    的头像 发表于 07-09 09:16 1355次阅读

    计算机视觉属于人工智能吗

    和解释视觉信息,从而实现对图像和视频的自动分析和处理。 计算机视觉的基本概念 2.1 计算机视觉
    的头像 发表于 07-09 09:11 1341次阅读

    机器视觉计算机视觉的区别

    在人工智能和自动化技术的快速发展中,机器视觉(Machine Vision, MV)和计算机视觉(Computer Vision, CV)作为两个重要的分支领域,都扮演着至关重要的角色。尽管它们在
    的头像 发表于 06-06 17:24 1359次阅读

    计算机视觉的主要研究方向

    计算机视觉(Computer Vision, CV)作为人工智能领域的一个重要分支,致力于使计算机能够像人眼一样理解和解释图像和视频中的信息。随着深度学习、大数据等技术的快速发展,计算机
    的头像 发表于 06-06 17:17 1002次阅读

    计算机视觉的十大算法

    随着科技的不断发展,计算机视觉领域也取得了长足的进步。本文将介绍计算机视觉领域的十大算法,包括它们的基本原理、应用场景和优缺点。这些算法在图像处理、目标检测、人脸识别等领域有着广泛的应
    的头像 发表于 02-19 13:26 1260次阅读
    <b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的十大算法

    工业视觉计算机视觉的区别

    工业视觉主要解决以往需要人眼进行的工件的定位、测量、检测等重复性劳动;计算机视觉的主要任务是赋予智能机器人视觉,利用测距、物体标定与识别等功能实现
    发表于 01-16 10:06 611次阅读
    工业<b class='flag-5'>视觉</b>与<b class='flag-5'>计算机</b><b class='flag-5'>视觉</b>的区别