0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一道比较有难度的完美矩形题

算法与数据结构 来源:算法与数据结构 作者:labuladong 2021-01-04 14:17 次阅读

今天讲一道非常有意思,而且比较有难度的题目。

我们知道一个矩形有四个顶点,但是只要两个顶点的坐标就可以确定一个矩形了(比如左下角和右上角两个顶点坐标)。

来看看力扣第 391 题「完美矩形」,题目会给我们输入一个数组rectangles,里面装着若干四元组(x1,y1,x2,y2),每个四元组就是记录一个矩形的左下角和右上角顶点坐标。

也就是说,输入的rectangles数组实际上就是很多小矩形,题目要求我们输出一个布尔值,判断这些小矩形能否构成一个「完美矩形」。函数签名如下:

defisRectangleCover(rectangles:List[List[int]])->bool

所谓「完美矩形」,就是说rectangles中的小矩形拼成图形必须是一个大矩形,且大矩形中不能有重叠和空缺。

比如说题目给我们举了几个例子:

19b50fdc-4423-11eb-8b86-12bb97331649.png

1a1cb240-4423-11eb-8b86-12bb97331649.png

1a4475c8-4423-11eb-8b86-12bb97331649.png

这个题目难度是 Hard,如果没有做过类似的题目,还真做不出来。

常规的思路,起码要把最终形成的图形表示出来吧,而且你要有方法去判断两个矩形是否有重叠,是否有空隙,虽然可以做到,不过感觉异常复杂。

其实,想判断最终形成的图形是否是完美矩形,需要从「面积」和「顶点」两个角度来处理。

先说说什么叫从「面积」的角度。

rectangles数组中每个元素都是一个四元组(x1, y1, x2, y2),表示一个小矩形的左下角顶点坐标和右上角顶点坐标。

那么假设这些小矩形最终形成了一个「完美矩形」,你会不会求这个完美矩形的左下角顶点坐标(X1, Y1)和右上角顶点的坐标(X2, Y2)?

这个很简单吧,左下角顶点(X1, Y1)就是rectangles中所有小矩形中最靠左下角的那个小矩形的左下角顶点;右上角顶点(X2, Y2)就是所有小矩形中最靠右上角的那个小矩形的右上角顶点。

注意我们用小写字母表示小矩形的坐标,大写字母表示最终形成的完美矩形的坐标,可以这样写代码:

#左下角顶点,初始化为正无穷,以便记录最小值
X1,Y1=float('inf'),float('inf')
#右上角顶点,初始化为负无穷,以便记录最大值
X2,Y2=-float('inf'),-float('inf')

forx1,y1,x2,y2inrectangles:
#取小矩形左下角顶点的最小值
X1,Y1=min(X1,x1),min(Y1,y1)
#取小矩形右上角顶点的最大值
X2,Y2=max(X2,x2),max(Y2,y2)

这样就能求出完美矩形的左下角顶点坐标(X1, Y1)和右上角顶点的坐标(X2, Y2)了。

计算出的X1,Y1,X2,Y2坐标是完美矩形的「理论坐标」,如果所有小矩形的面积之和不等于这个完美矩形的理论面积,那么说明最终形成的图形肯定存在空缺或者重叠,肯定不是完美矩形。

代码可以进一步:

defisRectangleCover(rectangles:List[List[int]])->bool:
X1,Y1=float('inf'),float('inf')
X2,Y2=-float('inf'),-float('inf')
#记录所有小矩形的面积之和
actual_area=0
forx1,y1,x2,y2inrectangles:
#计算完美矩形的理论坐标
X1,Y1=min(X1,x1),min(Y1,y1)
X2,Y2=max(X2,x2),max(Y2,y2)
#累加所有小矩形的面积
actual_area+=(x2-x1)*(y2-y1)

#计算完美矩形的理论面积
expected_area=(X2-X1)*(Y2-Y1)
#面积应该相同
ifactual_area!=expected_area:
returnFalse

returnTrue

这样,「面积」这个维度就完成了,思路其实不难,无非就是假设最终形成的图形是个完美矩形,然后比较面积是否相等,如果不相等的话说明最终形成的图形一定存在空缺或者重叠部分,不是完美矩形。

但是反过来说,如果面积相同,是否可以证明最终形成的图形是完美矩形,一定不存在空缺或者重叠?

肯定是不行的,举个很简单的例子,你假想一个完美矩形,然后我在它中间挖掉一个小矩形,把这个小矩形向下平移一个单位。这样小矩形的面积之和没变,但是原来的完美矩形中就空缺了一部分,也重叠了一部分,已经不是完美矩形了。

综上,即便面积相同,并不能完全保证不存在空缺或者重叠,所以我们需要从「顶点」的维度来辅助判断。

记得小学的时候有一道智力题,给你一个矩形,切一刀,剩下的图形有几个顶点?答案是,如果沿着对角线切,就剩 3 个顶点;如果横着或者竖着切,剩 4 个顶点;如果只切掉一个小角,那么会出现 5 个顶点。

回到这道题,我们接下来的分析也有那么一点智力题的味道。

显然,完美矩形一定只有四个顶点。矩形嘛,按理说应该有四个顶点,如果存在空缺或者重叠的话,肯定不是四个顶点,比如说题目的这两个例子就有不止 4 个顶点:

1a955cfe-4423-11eb-8b86-12bb97331649.png

PS:我也不知道应该用「顶点」还是「角」来形容,好像都不太准确,本文统一用「顶点」来形容,大家理解就好~

只要我们想办法计算rectangles中的小矩形最终形成的图形有几个顶点,就能判断最终的图形是不是一个完美矩形了。

那么顶点是如何形成的呢?我们倒是一眼就可以看出来顶点在哪里,问题是如何让计算机,让算法知道某一个点是不是顶点呢?这也是本题的难点所在。

看下图的四种情况:

1ae13f5c-4423-11eb-8b86-12bb97331649.jpg

图中画红点的地方,什么时候是顶点,什么时候不是顶点?显然,情况一和情况三的时候是顶点,而情况二和情况四的时候不是顶点。

也就是说,当某一个点同时是 2 个或者 4 个小矩形的顶点时,该点最终不是顶点;当某一个点同时是 1 个或者 3 个小矩形的顶点时,该点最终是一个顶点。

注意,2 和 4 都是偶数,1 和 3 都是奇数,我们想计算最终形成的图形中有几个顶点,也就是要筛选出那些出现了奇数次的顶点,可以这样写代码:

defisRectangleCover(rectangles:List[List[int]])->bool:
X1,Y1=float('inf'),float('inf')
X2,Y2=-float('inf'),-float('inf')

actual_area=0
#哈希集合,记录最终图形的顶点
points=set()
forx1,y1,x2,y2inrectangles:
X1,Y1=min(X1,x1),min(Y1,y1)
X2,Y2=max(X2,x2),max(Y2,y2)

actual_area+=(x2-x1)*(y2-y1)
#先算出小矩形每个点的坐标
p1,p2=(x1,y1),(x1,y2)
p3,p4=(x2,y1),(x2,y2)
#对于每个点,如果存在集合中,删除它;
#如果不存在集合中,添加它;
#在集合中剩下的点都是出现奇数次的点
forpin[p1,p2,p3,p4]:
ifpinpoints:points.remove(p)
else:points.add(p)

expected_area=(X2-X1)*(Y2-Y1)
ifactual_area!=expected_area:
returnFalse

returnTrue

这段代码中,我们用一个points集合记录rectangles中小矩形组成的最终图形的顶点坐标,关键逻辑在于如何向points中添加坐标:

如果某一个顶点p存在于集合points中,则将它删除;如果不存在于集合points中,则将它插入。

这个简单的逻辑,让points集合最终只会留下那些出现了 1 次或者 3 次的顶点,那些出现了 2 次或者 4 次的顶点都被消掉了。

那么首先想到,points集合中最后应该只有 4 个顶点对吧,如果len(points) != 4说明最终构成的图形肯定不是完美矩形。

但是如果len(points) == 4是否能说明最终构成的图形肯定是完美矩形呢?也不行,因为题目并没有说rectangles中的小矩形不存在重复,比如下面这种情况:

1b0dfa42-4423-11eb-8b86-12bb97331649.jpg

下面两个矩形重复了,按照我们的算法逻辑,它们的顶点都被消掉了,最终是剩下了四个顶点;再看面积,完美矩形的理论坐标是图中红色的点,计算出的理论面积和实际面积也相同。但是显然这种情况不是题目要求完美矩形。

所以不仅要保证len(points) == 4,而且要保证points中最终剩下的点坐标就是完美矩形的四个理论坐标,直接看代码吧:

defisRectangleCover(rectangles:List[List[int]])->bool:
X1,Y1=float('inf'),float('inf')
X2,Y2=-float('inf'),-float('inf')

points=set()
actual_area=0
forx1,y1,x2,y2inrectangles:
#计算完美矩形的理论顶点坐标
X1,Y1=min(X1,x1),min(Y1,y1)
X2,Y2=max(X2,x2),max(Y2,y2)
#累加小矩形的面积
actual_area+=(x2-x1)*(y2-y1)
#记录最终形成的图形中的顶点
p1,p2=(x1,y1),(x1,y2)
p3,p4=(x2,y1),(x2,y2)
forpin[p1,p2,p3,p4]:
ifpinpoints:points.remove(p)
else:points.add(p)
#判断面积是否相同
expected_area=(X2-X1)*(Y2-Y1)
ifactual_area!=expected_area:
returnFalse
#判断最终留下的顶点个数是否为4
iflen(points)!=4:returnFalse
#判断留下的4个顶点是否是完美矩形的顶点
if(X1,Y1)notinpoints:returnFalse
if(X1,Y2)notinpoints:returnFalse
if(X2,Y1)notinpoints:returnFalse
if(X2,Y2)notinpoints:returnFalse
#面积和顶点都对应,说明矩形符合题意
returnTrue

这就是最终的解法代码,从「面积」和「顶点」两个维度来判断:

1、判断面积,通过完美矩形的理论坐标计算出一个理论面积,然后和rectangles中小矩形的实际面积和做对比。

2、判断顶点,points集合中应该只剩下 4 个顶点且剩下的顶点必须都是完美矩形的理论顶点。

说实话,如果没做过,这种特性真不是一时半会能想到的,但是看过一遍没问题了,你学会了吗?

责任编辑:xj

原文标题:这道「完美矩形」给我整不会了…

文章出处:【微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 函数
    +关注

    关注

    3

    文章

    4276

    浏览量

    62319
  • 代码
    +关注

    关注

    30

    文章

    4721

    浏览量

    68216

原文标题:这道「完美矩形」给我整不会了…

文章出处:【微信号:TheAlgorithm,微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    IPV6报文怎么进行通信

    写这篇文章的启发是在群里,看到个小兄弟说有尝做一道IPV6的基础,看到该消息想着自己也没啥事,就做下,弄个饭钱也还行,然后就开始了。
    的头像 发表于 10-25 09:36 114次阅读
    IPV6报文怎么进行通信

    用tas5711做2.1声,低音15w和R/L各8w,喇叭用多欧比较合适?

    计划用tas5711做2.1声,低音15w和R/L各8w,喇叭用多欧比较合适?
    发表于 10-09 06:00

    使用DAC53608的八通可编程比较

    电子发烧友网站提供《使用DAC53608的八通可编程比较器.pdf》资料免费下载
    发表于 10-08 11:26 0次下载
    使用DAC53608的八通<b class='flag-5'>道</b>可编程<b class='flag-5'>比较</b>器

    企业如何数字化转型

    在当今这个日新月异的数字时代,企业的数字化转型已不再是一道选择,而是一道必答题。它不仅关乎企业的生存与发展,更是决定企业能否在激烈的市场竞争中脱颖而出的关键。 企业数字化转型,简而言之,就是利用
    的头像 发表于 08-27 16:55 305次阅读

    好未来与微软开展合作,携手构建智慧学习生态系统

    想象下,你正在解一道复杂的数学。这难度不小,你解题时遇到了瓶颈。这时,位“老师”出现在你
    的头像 发表于 08-20 10:12 467次阅读

    Verilog testbench问题求助

    这是我在HDLbits网站上做到的一道,是testbench,请问这个代码为什么input都是低电平0?我设置的时钟就是周期10ns,占空比50%的时钟信号啊?怎么会出现这种情况......
    发表于 07-21 11:14

    迟滞比较器和滞回比较器是样的吗

    迟滞比较器和滞回比较器是两种不同的电路,它们在功能和应用上有所区别。 迟滞比较器(Hysteresis Comparator) 迟滞比较器是
    的头像 发表于 07-11 09:26 1047次阅读

    种新的微带线和矩形波导集成形结构研究

    矩形波导可用于设计高Q值的元件,但需要复杂的转换结构实现与平面电路的集成。目前已经有些针对微带线和矩形波导转换结构的研究,然而,传统的矩形波导平面结构集成方案体积庞大,通常也需要精密
    的头像 发表于 05-30 14:26 679次阅读
    <b class='flag-5'>一</b>种新的微带线和<b class='flag-5'>矩形</b>波导集成形结构研究

    stm8 TIM2通1的比较输出无法进入中断的原因?

    我的目的是利用TIM2通1的比较输出模式(翻转模式),在翻转的情况下能产生个中断,以便在中断内记录翻转的次数。但是发现直无法进入中断函数TIM2_CC_IRQHandler (v
    发表于 05-14 06:53

    数据安全的最后一道防线是数据加密

    信息数据安全领域最薄弱的环节是人,也指人为威胁。 人为威胁可分为无意识的和有意识的。 无意威胁是指因管理和用户操作失误而导致的信息泄露或破坏。有意威胁是指某些组织或个人为了自己的目的或利益,直接破坏各种设备,窃取和盗用有价值的数据信息,制造和传播病毒,或改变系统功能等,这种有意识的威胁最值得关注。 企业的信息数据通常通过聊天工具、电子邮件、网盘、移动存储和智能手机等渠道泄露。但这些途径也是最受欢迎的企业
    的头像 发表于 05-10 13:43 253次阅读

    18年,6570个日夜,小熊电器何以撩动年轻人?

    小熊电器,用十八年解一道“年轻方程式”
    的头像 发表于 03-25 09:23 1826次阅读
    18年,6570个日夜,小熊电器何以撩动年轻人?

    从&quot;精益思想&quot;看机器人的开发与应用:场科技与效率的完美融合

    在科技飞速发展的今天,机器人已经深入到我们的生活和工作之中,成为了提高效率、提升质量的重要工具。然而,如何让机器人的开发和利用更有效率、更精细,这是摆在我们面前的一道难题。此时,"精益思想"的出现
    的头像 发表于 01-12 11:57 407次阅读

    射频产品设计注意事项

    电源处理是射频设计的第一道功课,电源处理不当,有源射频电路将前功尽弃。同接收机样,浪涌、噪声、DC-DC纹波、共模干扰都不可忽视,由于发射机是大信号,处理难度小于接收机。
    的头像 发表于 12-12 10:34 1077次阅读
    射频产品设计注意事项

    半导体芯片切割,一道精细工艺的科技之门

    在半导体制造的过程中,芯片切割是一道重要的环节,它不仅决定了芯片的尺寸和形状,还直接影响到芯片的性能和使用效果。随着科技的不断进步,芯片切割技术也在不断发展,成为半导体制造领域中一道精细
    的头像 发表于 11-30 18:04 1219次阅读
    半导体芯片切割,<b class='flag-5'>一道</b>精细工艺的科技之门

    plc与单片机的优缺点 PLC与单片机系统比较有何优势?

    plc与单片机的优缺点 PLC与单片机系统比较有何优势? PLC(可编程逻辑控制器)和单片机是现代自动化领域中常用的控制系统。它们在实际应用中各有优势和缺点。本文将详细比较PLC和单片机系统,并详细
    的头像 发表于 11-21 16:10 2656次阅读