0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2021年IT领导者对人工智能和机器学习未来发展的期望

ss 来源:企业网D1Net 作者:Chris Preimesberger 2021-01-05 17:07 次阅读

每到岁末年初,IT思想领袖都会对未来一年的技术发展、创新服务、行业进步等发展趋势进行分析预测。人们需要关注与人工智能机器学习深度学习以及IT软件和服务有关的主要趋势。

以下是IT行业领域中一些思想领袖对人工智能和机器学习未来发展的期望:

Dataiku公司首席执行官兼联合创始人Florian Douetteau:

包容性工程将开始进入主流,以支持多样性。为了确保在人工智能计划中融入多样性,组织还必须投入大量时间和资源来实施包容性工程。这其中包括尽可能收集和使用不同的数据集。这将有助于组织创造一种让更多人进入该领域的体验——从教育到招聘实践等各方面。

英特尔公司物联网事业部副总裁兼工业解决方案部总经理Christine Boles:

2020年发生的疫情极大地加速了组织通过解决方案来完成其工业4.0转型的需求,这些解决方案使他们在业务运营中拥有更大的灵活性、可视性和效率。2021年将会出现越来越多的解决方案,这些解决方案可以满足各种需求,其中包括机器学习、机器视觉和高级分析等。随着经济的复苏,将会继续看到对具有更多IT功能的运营技术和基础设施的投资,允许广泛的参与者部署这些解决方案。并且到2021年,工业4.0的采用率将会显著提高。

Intuit公司首席技术官Marianna Tessel:

人工智能优先应用程序改变了客户服务:随着人工智能技术不断成熟,并在人们工作和生活的各个方面变得无处不在。人工智能将成为Intuit公司的应用程序开发和使用方式不可或缺的一部分,并将彻底改变应用程序的设计方式。

道德人工智能领域:道德人工智能与团队建设一样重要。随着组织的业务越来越多地在由消费者关注下运营,人们将继续关注道德人工智能的使用。

人工智能推动中小企业复苏:研究表明,50%的小企业在五年内倒闭。而且大多数由于现金流问题而导致失败。由于发生疫情,中小型企业现在拥有的资源比以往任何时候都要少,并且正在应对大量的不确定性,他们不知道是否可以保留更多的库存,是否可以更好地管理其现金流量或是否可以雇用更多的工作人员。

英特尔公司物联网事业部副总裁兼零售、银行、酒店、教育业务总经理Joe Jensen:

在2021年,很多组织将优先考虑转向“教育即服务”,希望通过教育政策和投资能够推动这一概念的发展。至关重要的是将资金和拨款转移到教育领域以推进这种服务模式,以确保所有学生都能获得负担得起的高质量教育。长期而言,“教育即服务”将成为全球教育的标准。

网络攻击者将人工智能技术作为新的欺诈手段:过去的十年中,他们在暗网上构建了一个完整网络犯罪生态系统。网络犯罪分子越来越多地使用新兴技术,以实现大规模自动化攻击。暗网如今已经成为网络攻击者的虚拟利器,他们可以在暗网上共享攻击技巧以扫描漏洞并进行欺诈。随着他们比以往任何时候都更多地利用人工智能和机器人技术,网络犯罪的演变和复杂性将在2021年持续发展。

Jumio公司首席执行官Robert Prigge:

就像行业组织采用人工智能来防御网络攻击并阻止欺诈一样,欺诈者也正在使用人工智能技术进行大规模攻击。在2021年,人们将见证更多的人工智能的竞争。人们期望在几个关键领域达到前所未有的水平:

机器学习:网络攻击者将使用机器学习(ML)技术查明漏洞来加速对网络和系统的攻击。随着越来越多的组织在疫情的推进下加快进行数字化转型,网络攻击者将会迅速利用机器学习来发现和利用安全漏洞。

对人工智能系统的攻击:人工智能系统也可能被黑客攻击。而对人工智能系统的网络攻击不同于传统的攻击,它利用了底层人工智能算法中无法修复的固有局限性,其最终目标是操纵人工智能系统来改变其行为——这可能会产生广泛而有害的影响,因为人工智能现在是所有行业关键系统的核心组件。如果改变了数据的分类方式和存储位置。预计2021年会有更多针对人工智能系统的攻击。

人工智能鱼叉式网络钓鱼攻击:2021年,网络攻击者将使用人工智能技术来提高网络钓鱼攻击的准确性。针对特定受众以人工智能为基础的鱼叉式网络钓鱼电子邮件活动将会更加猖獗。从社交媒体发掘信息并针对特定受众进行攻击定制,可以使受众点击率提高多达40倍,而所有这些都能够通过人工智能技术实现自动化。在2021年,网络犯罪分子将继续模仿人类行为的网络钓鱼攻击,复制特定的语言或语调,以提高网络攻击的成功率。

Deepfake视频:Deepfake视频技术使用人工智能结合现有图像技术来代替某人的头像,并复制面部特征和声音。到2020年,越来越多的Deepfake技术被用于欺诈。随着越来越多的组织在2021年采用生物识别验证解决方案,深度欺诈将成为网络欺诈者获得消费者账户的一项令人垂涎的技术。与其相反,对于利用数字身份验证解决方案的组织而言,能够识别深层造假的技术将同样重要。组织必须确保他们实施的安全解决方案能够阻止这些不断增长的网络攻击,这些网络攻击行为将在2021年被欺诈者充分利用。

英特尔公司物联网事业部副总裁兼零售、银行、酒店及教育事业部总经理Joe Jensen:

在未来一年,人们将会看到零售业的“仓库化”——零售商将重点转向在微观实现地点履行订单,无论是杂货还是消费品。这将帮助小型零售商节约运营成本,尤其是降低租金和客流量。

从长远来看,零售商将继续对无缝便捷的解决方案做出回应,以经济高效地为送货客户提供服务。为了在不断变化的零售空间中成为“赢家”,零售商必须以创造性的方式改变生产方式,以满足客户的期望。

Lexalytics公司首席执行官Jeff Catlin和首席科学家Paul Barba:

数据注释将在2021年成为下一个“副业”。这将成为一种获得额外收入的方式,但在定价上已经出现了一种相互竞争的现象。然而,随着人工智能在需要专业知识的行业(如医疗保健或法律)取得成功,对专业知识的需求将推动基础设施的发展,以便将更有利可图的注释合同与专业人员相匹配。

机器学习平台领域将进行更多整合。在过去几年中,随着人工智能成为一种IT技术,涌现了很多人工智能基础设施公司,并开始推广人工智能平台,以简化为希望利用人工智能的公司构建模型的任务。

人工智能平台将得到整合,人工智能服务将弥补这方面的不足。越来越多的组织接受机器学习领域的第三方专业知识,这推动了机器学习咨询服务的增长。这一趋势将在2021年继续并加速发展。

英特尔公司有线和核心网络副总裁兼总经理Alex Quach:

核心网络的虚拟化将达到一个临界点,2024年核心网络工作负载将从50%增长到80%以上,预计大多数领先的5G运营商将在2021年开始5G SA核心部署。

dotData公司创始人兼首席执行官Ryohei Fujimaki:

人工智能自动化将加速数字化转型计划:第一波数字化转型浪潮专注于产品和服务的数字化,第二波数字化转型浪潮将专注于使用人工智能优化和提高组织的工作效率,生成更深入的数据驱动见解并自动执行智能业务决策。人工智能推动的数字化转型浪潮将从金融服务、保险和制造业的早期采用者扩展到其他行业,并且人工智能和机器学习将嵌入到整个企业的多个业务功能中,从而不仅提高效率并且创造新的产品和服务。

现在出现这种情况的主要原因之一是人工智能和机器学习自动化平台的可用性,这使组织无需投资数据科学团队即可快速轻松地实施人工智能。这些AutoML2.0平台可自动执行人工智能/机器学习开发工作流程,以加快人工智能部署过程,并加快组织的数字化转型计划。

更多从事人工智能的商业智能团队:疫情导致很多组织在2020年减缓了人工智能投资。尽管人工智能技术仍然是关键技术领域之一,但组织仍需要一种有效的方法来扩展其人工智能实践,并加快采用人工智能的投资回报。随着组织面临优化工作流程的压力,越来越多的组织将开始要求商业智能(BI)团队开发和管理人工智能/机器学习模型。

这种驱动新型的基于商业智能(BI)的“人工智能开发人员”的能力将受到两个关键因素的驱动:首先,与雇用的数据科学家相比,使用AutoML2.0平台等工具使商业智能(BI)团队更具可持续性和可扩展性。其次,由于商业智能(BI)团队比数据科学家更接近业务用例,因此从需求到工作模型的生命周期将得到加速。新的AutoML2.0平台可帮助人工智能/机器学习开发流程实现自动化,从而使组织能够构建更快、更有用的模型。

无代码人工智能的演变:从拖放式可视化编程工具到真正的无代码全周期人工智能自动化。随着对其他人工智能应用程序需求的增长,组织将需要投资有助于其加速和民主化数据的技术科学过程。这产生了一些所谓的无代码人工智能。这些无代码平台中有许多是工作流程驱动的可视化拖放工具(又称可视化编程),并声称可以帮助非技术人员简化人工智能的开发。

带来的问题是,尽管简单的工作流程易于构建和概念化,但大多数人工智能/机器学习模型都需要大规模、非常复杂的工作流程,这些工作流程很快变得笨拙,并给组织带来了全新的挑战。实际上,数据科学家必须执行的绝大部分工作通常与机器学习模型的选择和优化之前的任务相关,例如特征工程-数据科学的核心。这意味着组织将需要寻找更复杂的AutoML2.0平台,以实现真正的无代码端到端自动化,从自动创建和评估数千个功能(基于人工智能的功能工程)到机器学习和人工智能模型,以及之间的所有步骤。

在2021年,人们将看到AutoML2.02.0平台的兴起,它将无代码提升到一个新的水平,并最终开始实现“一键式无代码开发”的承诺。

实时智能的兴起:2021年实时智能将越来越成为一个因素。随着从物理到数字化的不可避免的转变,越来越多的组织开始看到访问实时信息的好处。实时预测的能力将得到广泛的关注。除了预测之外,从实时和流式数据源中理解和发现隐藏的和可操作见解的能力将成为实时智能决策的关键。易于使用的AutoML2.0平台与实时预测和洞察相结合,将使组织能够获得实时情报并采取持续行动。

人工智能和机器学习将超越预测:虽然预测是最有价值的结果之一,但人工智能和机器学习必须产生超出预测可操作的见解,组织可以使用这些见解。AutoML2.0平台可自动进行假设生成(又称特征工程),并探索成千上万甚至上百万个假设模式,而这是传统方法无法实现的。随着组织认识到数据功能不仅适用于预测分析,还可以使用提供数据特征的自动发现和工程设计的Auto机器学习 2.0平台,以提供更多的清晰度、透明度和洞察力。通过允许组织发现未知的趋势和数据模式的重要信息,从而为其业务增加价值。

通过敏捷人工智能将人工智能更快地集成到业务中:人工智能和机器学习只在将它们集成到业务中时才能产生业务价值。但是,许多组织致力于通过人工智能/机器学习货币化,并且许多人工智能/机器学习项目无法走出数据科学实验室。MLOps是简化人工智能和机器学习生产的重要趋势之一。虽然MLOps是开发和部署人工智能/机器学习的重要方面,但它并不是成功的企业人工智能的最终目标。

2021年将显示出人们对平台的兴趣与使用的增加,这些平台还可以自动化企业人工智能工作流的前半部分——数据工程和功能工程。通过能够实现生命周期的100%自动化,组织将能够开始摆脱耗时的瀑布式方法来进行人工智能开发,并开始采用依赖于执行速度和快速反馈的更加敏捷的流程。

英特尔公司无线接入网络部门副总裁兼总经理Cristina Rodriguez:

随着网络的高速转型,2021年将大规模地在vRAN架构上部署Massive MIMO(即在试用阶段之后在数千个站点部署)。

Agora Inc.首席运营官兼CRO Reggie Yativ:

人工智能、AR、VR等技术将迎来下一代热门应用和平台,以及更多的技术作品将创建用例,其功能远比任何人都能想象或预期的强大和可扩展。

英特尔公司智慧城市与智慧交通总经理Sameer Sharma:

2021年将是智慧和弹性城市、基础设施和交通运输的突破之年。在短期内,将看到采用智慧城市技术的中型城市急剧增加,这将导致在通常的技术中心之外的技术民主化。从长远来看,随着消费者开始看到生活质量的好处,更多的农村地区将采用智慧城市基础设施。

人们还将看到技术投资的增长,从边缘(人工智能)到(5G)网络再到云计算。随着城市继续从疫情中复苏,技术将成为确保进步和采用新的商业模式,促进经济增长的主要动力。

Centrify公司网络安全主管Torsten George:

人工智能将有助于优化治理模型:在身份治理和管理(IGA)中,建立广泛的职责、分配给组等通常会导致为身份分配特定的权限。人工智能可以用来查看这些特权是否被使用,以及它们是如何被使用的。然后可以帮助提出建议,根据使用情况调整这些分配,到2021年,可能会导致更准确的访问建模,以确定谁应该访问哪些资产以及为什么要访问这些资产。

人工智能可以帮助阻止病毒变异,这里所指的是计算机病毒。几十年来,防病毒软件解决方案一直都是基于签名的,从而可以识别病毒的唯一签名并将其放入其代码中,希望病毒不会在软件更新之间改变。人工智能技术可以用来解决这个问题。可以开发建立特定模式的复杂算法,因此它们不再受签名限制。与传统安全工具相比,在变异时捕获这些病毒的机会要高得多,随着威胁参与者加大努力在持续的不确定时期造成破坏,这种手段在2021年将变得越来越重要。

英特尔公司物联网事业部副总裁兼健康、生命科学和新兴技术总经理Stacey Shulman:

目前阻碍医疗保健行业发展的一个因素是规范医疗记录和跨组织的数据共享。为了解决疾病和健康问题而在医疗行业进行合作可能是至关重要的,特别是在涉及公共卫生危机和跟踪人口健康时,正如人们在2020年发生的疫情中看到的那样。

在2021年,随着人工智能和联合学习等新兴技术在医疗领域的普及,将会看到信息共享交付模式的改进。除了推动远程医疗等创新之外,这些技术还将加速和简化协作过程,使医疗专业人员更好为患者提供高质量的护理,并及时提供新的治疗方案。

责任编辑:xj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IT
    IT
    +关注

    关注

    2

    文章

    868

    浏览量

    63597
  • 人工智能
    +关注

    关注

    1794

    文章

    47642

    浏览量

    239627
  • 机器学习
    +关注

    关注

    66

    文章

    8438

    浏览量

    132921
收藏 人收藏

    评论

    相关推荐

    Microland被评为智能自动化服务领导者

    Microland在ISG Providers Lens Study 2024智能自动化服务人工智能IT运营(AIOps)象限中被评为美国地区领导者。 Microland Recognized as a Leader
    的头像 发表于 01-19 09:42 92次阅读
    Microland被评为<b class='flag-5'>智能</b>自动化服务<b class='flag-5'>领导者</b>

    Embarcadero:人工智能驱动发展我们的期望是什么

    人人都在谈论人工智能。我们的Visual Assist 团队对人工智能有何期望?显然,人工智能与我们息息相关——关于这一点的讨论已经无需多言——但它也被过度炒作了。我们简单客观地了解一
    的头像 发表于 01-15 10:46 170次阅读

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    未来,涵盖如基于行为的人工智能、生物启发的进化人工智能及认知机器人技术的发展。这一历史背景为随后的大模型驱动的具身
    发表于 12-28 21:12

    嵌入式和人工智能究竟是什么关系?

    领域,如工业控制、智能家居、医疗设备等。 人工智能是计算机科学的一个分支,它研究如何使计算机具备像人类一样思考、学习、推理和决策的能力。人工智能
    发表于 11-14 16:39

    人工智能机器学习和深度学习存在什么区别

    人工智能指的是在某种程度上显示出类似人类智能的设备。AI有很多技术,但其中一个很大的子集是机器学习——让算法从数据中学习
    发表于 10-24 17:22 2520次阅读
    <b class='flag-5'>人工智能</b>、<b class='flag-5'>机器</b><b class='flag-5'>学习</b>和深度<b class='flag-5'>学习</b>存在什么区别

    《AI for Science:人工智能驱动科学创新》第6章人AI与能源科学读后感

    探讨了人工智能如何通过技术创新推动能源科学的进步,为未来的可持续发展提供了强大的支持。 首先,书中通过深入浅出的语言,介绍了人工智能在能源领域的基本概念和技术原理。这使得我对
    发表于 10-14 09:27

    AI for Science:人工智能驱动科学创新》第4章-AI与生命科学读后感

    。 4. 对未来生命科学发展的展望 在阅读这一章后,我对未来生命科学的发展充满了期待。我相信,在人工智能技术的推动下,生命科学将取得更加显著的进展。例如,在药物研发领域,AI技术将帮助
    发表于 10-14 09:21

    《AI for Science:人工智能驱动科学创新》第二章AI for Science的技术支撑学习心得

    人工智能在科学研究中的核心技术,包括机器学习、深度学习、神经网络等。这些技术构成了AI for Science的基石,使得AI能够处理和分析复杂的数据集,从而发现隐藏在数据中的模式和规
    发表于 10-14 09:16

    《AI for Science:人工智能驱动科学创新》第一章人工智能驱动的科学创新学习心得

    人工智能:科学研究的加速器 第一章清晰地阐述了人工智能作为科学研究工具的强大功能。通过机器学习、深度学习等先进技术,AI能够处理和分析海量
    发表于 10-14 09:12

    risc-v在人工智能图像处理应用前景分析

    RISC-V和Arm内核及其定制的机器学习和浮点运算单元,用于处理复杂的人工智能图像处理任务。 四、未来发展趋势 随着
    发表于 09-28 11:00

    名单公布!【书籍评测活动NO.44】AI for Science:人工智能驱动科学创新

    每个交叉领域,本书通过案例进行了详尽的介绍,梳理了产业地图,并给出了相关政策启示。 《AI for Science:人工智能驱动科学创新》适合所有关注人工智能技术和产业发展的读者阅读,特别适合材料科学
    发表于 09-09 13:54

    FPGA在人工智能中的应用有哪些?

    定制化的硬件设计,提高了硬件的灵活性和适应性。 综上所述,FPGA在人工智能领域的应用前景广阔,不仅可以用于深度学习的加速和云计算的加速,还可以针对特定应用场景进行定制化计算,为人工智能技术的
    发表于 07-29 17:05

    人工智能机器学习和深度学习是什么

    在科技日新月异的今天,人工智能(Artificial Intelligence, AI)、机器学习(Machine Learning, ML)和深度学习(Deep Learning,
    的头像 发表于 07-03 18:22 1386次阅读

    机器学习怎么进入人工智能

    人工智能已成为一个热门领域,涉及到多个行业和领域,例如语音识别、机器翻译、图像识别等。 在编程中进行人工智能的关键是使用机器学习算法,这是
    的头像 发表于 04-04 08:41 372次阅读

    嵌入式人工智能的就业方向有哪些?

    联网ARM开发 NB-IoT开发及实战 七:python工程师,人工智能工程师 python语法基础 python核心编程 基于OpenCV的机器视觉开发 嵌入式人工智能渗入生活的方方面面,广泛应用
    发表于 02-26 10:17