0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

主动式数字微流控芯片的研究步入了崭新的阶段

MEMS 来源:MEMS 作者:MEMS 2021-01-11 09:09 次阅读

近日,由广东奥素液芯微纳科技有限公司ACXEL)、杭州领挚科技有限公司(LINKZILL)、天马微电子TIANMA)等机构合作开发的有源矩阵数字微流控芯片(AM-EWOD)作为重要研究成果于微电子器件领域的顶级会议 IEDM会议成功发表。此芯片基于极简的电路设计而获得了极高的像素密度,实现片上高通量、并行处理多通道的生物样本,且样本的处理具有密封性和各通道的独立性,有效避免了交叉污染的产生。基于此芯片生成的微液滴,其密度、均一性和稳定性均处于该领域的顶尖水平,象征着主动式数字微流控芯片的研究步入了崭新的阶段。

图1 主动式数字微流控平台(来源:ACXEL)

微流控技术的核心思想,是以最小的消耗来获得最大的产出,仅需极少的样本采集便可获得所需的各项信息。具体来讲,微流控追求的是最小的反应体系(皮升、纳升级别),保持最低的试剂和样品消耗,并行最多的独立反应,同时保持反应体系的封闭性,减少污染,等等。微流体作为微流控技术操控的对象,可以广泛涵盖血液,尿液,唾液等各种生物样本,因此在体外诊断(IVD)领域逐步发展成为面向即时诊断(POCT)的关键技术。

图2 传统体外诊断消耗大量生物样本

数字微流控芯片是微流控技术的重要分支,也最具有技术含量和应用前景。其中微流体的控制是基于介质上的电润湿(EWOD)原理:当电极上存在液体,并给电极施加一个电位时,电极对应位置的固液界面的润湿性可以被改变,液滴与电极界面的接触角随之发生变化,如果液滴区域的电极间存在电位差异,导致接触角不同时,便会产生横向的推动力,使液滴在电极基板上发生横向移动。如果我们通过控制外围电路,向电极阵列输入调制电压信号,则可以控制液滴在微流控芯片的二维平面上任意地分布和移动。高的阵列像素规模和高通量地处理生物样本是紧密相关的,可以说,一个具有大规模像素阵列的数字微流控芯片是实现片上高通量和自动化处理生物样本的先决条件。然而,目前大多数传统的数字微流控芯片使用的是无源电极阵列,即每个像素电极都通过单独的导线与控制电路直接相连。若要大幅度提高像素数量,则意味着增加庞大的信号线数量以及控制电路复杂程度,这无疑使阵列的设计和制造难度大大提升。较弱的阵列可扩展性已经成为这项技术进一步发展的巨大障碍。

图3 可自由操控的液滴运动

传统上,像素数量和控制线路的复杂程度看似具有不可调和的矛盾,然而新型的电路却可以通过巧妙的设计加以解决。创新的路线之一就是有源矩阵技术。所谓有源矩阵技术,就是将薄膜晶体管TFT)集成到了每个像素电极中,每个TFT都相当于是一个电子开关,其包含栅极(G)、源极(S)和漏极(D),对栅极施加电压可以控制源漏电极之间导通和关断。如图4所示,晶体管的栅极与行信号连接,漏极与列信号连接,源极与像素电极连接,当一个行信号对栅极施加脉冲电压时,对应行的TFT开关就会打开,使列信号与像素电极之间导通,此时便可以给每个像素电极“写入”对应的驱动电压。通过这种行列扫描的驱动方式,N(行)×M(列)的阵列只需要N+M个信号线即可对阵列中的每个像素进行独立控制。与无源阵列相比,有源矩阵极大地缩减了信号线数量,简化了控制电路的结构。理论上,将有源矩阵技术应用于数字微流控芯片具备解决阵列扩展性问题的独特优势,实践中却由于跨学科技术融合存在一定的难度,致使迄今为止将有源矩阵技术应用于微流控芯片的成果并不多见。

图4 AM-EWOD数字微流控芯片

近日,由中国科学院苏州生物医学工程技术研究所团队牵头,奥素液芯、领擎科技、天马微电子、剑桥大学、上海交大团队共同合作,成功开发了一款基于薄膜电子有源背板技术的数字微流控芯片(AM-EWOD)及配套系统。这一工作为在微流控芯片上实现大规模、高通量的数字化生物实验全流程提供了可能性可能性。该成果发布在近日结束的2020国际电子器件会议(International Electron Devices Meeting,IEDM),论文题目为“Large-area manufacturable active matrix digital microfluidics platform for high-throughput biosample handling”。

在此项研究中,有源数字微流控芯片可对多种生物样本进行数字化并行处理,在提高通量的同时,保证了样本的密封性和各个通道的独立性,有效避免了交叉污染的产生。研究团队将平板显示中常用的有源矩阵技术(active matrix,AM)应用到数字微流控芯片中,在10 cm²的有效面积内集成了32×32共1024个像素,使片上集成阵列的像素数量指数级地增加,并完成了单像素级别的微液滴操控。基于该数字微流控平台生成的液滴具备高度的均一性,其体积变化系数仅为1%。指标对比已报道的其它微流控芯片的最优性能(9像素分辨率和4%的变化率)具有显著提升。单像素级的液滴操控能够极大地提高阵列像素使用率,并提高液滴控制精度和样本处理通量。本项目的有源阵列基板由天马微电子提供设计与制造服务;天马微电子可提供玻璃基芯片开发的MPG(multi-project glass)平台技术服务和稳定的量产制造服务。

图5 单液滴的生成、操控和排列

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    453

    文章

    50286

    浏览量

    421255
  • 电极
    +关注

    关注

    5

    文章

    804

    浏览量

    27141
  • 微流控
    +关注

    关注

    16

    文章

    502

    浏览量

    18850

原文标题:基于平板显示背板技术的有源数字微流控芯片

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    S型芯片的优势

    芯片的基本概念 芯片,也被称为芯片实验室
    的头像 发表于 11-01 14:30 149次阅读

    控阵列芯片和普通芯片的区别

    于生物化学研究,而普通芯片则广泛应用于电子设备中。 设计原理与结构 控阵列芯片:设计重点在于微米级通道和腔室,用于精确操控流体,实现多种
    的头像 发表于 10-30 15:10 108次阅读

    PDMS芯片和PMMA芯片的区别

    PDMS(聚二甲基硅氧烷)和PMMA(聚甲基丙烯酸甲酯,又称丙烯酸或有机玻璃)是两种常见的芯片材料,它们各自有不同的特性和应用场景。 材料特性 PDMS: 优点: 高分子材料,具有透明性、弹性
    的头像 发表于 09-25 16:03 252次阅读

    COC/COP芯片开发与应用

    控技术是新一代医疗诊断颠覆性技术,芯片是指采用微细加工技术,将通道网络结构及其他功能
    的头像 发表于 09-24 14:52 192次阅读

    芯片3大制作技术

    ,同时保持反应体系的封闭性,减少污染,等等。流体作为控技术操控的对象,可以广泛涵盖血液,尿液,唾液等各种生物样本,因此在体外诊断(IVD)领域逐步发展成为面向即时诊断(POCT)的关键技术。现在
    的头像 发表于 08-29 14:44 357次阅读

    工业物联网如何从数字步入数智化新阶段

    ”转型,工业物联网(IIoT)正处于从数字化向数智化新阶段的转型中。北京聚英电子有限公司(简称:聚英电子)将和您探讨工业物联网如何从数字步入数智化新
    的头像 发表于 08-23 16:08 248次阅读

    芯片在生物学有何应用?芯片液滴、检测技术介绍

    一、芯片相关技术 1、液滴技术 液滴操控包括液滴生成和
    的头像 发表于 08-14 14:28 411次阅读

    低成本芯片的加工与键合方法

    2.1 低成本 芯片 加工方法 选取了常用的低成本芯片加工方法进行介绍。 2.1.1
    的头像 发表于 07-23 16:46 568次阅读
    低成本<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>的加工与键合方法

    玻璃芯片前景分析

    玻璃芯片是一种由玻璃制成的小型装置,用于在尺度水平上操纵和分析流体。 它由在玻璃基板上蚀刻或制造的通道和微结构网络组成。
    的头像 发表于 07-21 15:05 402次阅读
    玻璃<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>前景分析

    控器官芯片中生物分子的无试剂共价固定研究

    控系统已经成为实验室芯片和器官芯片应用中的重要组成部分,其通常使用聚二甲基硅氧烷(PDMS)芯片和玻璃基片制造。
    的头像 发表于 05-19 17:33 798次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控器官<b class='flag-5'>芯片</b>中生物分子的无试剂共价固定<b class='flag-5'>研究</b>

    芯片技术的特点 芯片与生物芯片的区别

    比如对于控免疫分析芯片系统,抗体的固定、对通道表面的封闭,显著影响免疫分析的灵敏度,是该类芯片需要重点解决的问题。
    的头像 发表于 03-15 10:36 2496次阅读
    <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术的特点 <b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>与生物<b class='flag-5'>芯片</b>的区别

    介绍一种用于绝对定量的数字PCR芯片

    本文提出一种数字PCR芯片。作者将两层微结构背对背堆叠在一起使得在不改变
    的头像 发表于 03-04 10:15 736次阅读
    介绍一种用于绝对定量的<b class='flag-5'>微</b>腔<b class='flag-5'>式</b><b class='flag-5'>数字</b>PCR<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>

    浅谈芯片技术

    控技术(Micronuidics),或称为芯片实验室(1ab.on.a.chip),是把生物、化学等领域中样品的制备、反应、分离、检测等基本操作集成在一块芯片上,在
    的头像 发表于 03-01 09:13 4267次阅读
    浅谈<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>芯片</b>技术

    《深入理解FFmpeg阅读体验》+ 书收到了,崭新的开篇

    的嵌入技术水平能够更上一个台阶。现阶段的工作大部分还是偏向单纯的逻辑控制,这应该不是我的极限。下一步,我想在图像算法和控制算法方面做一些研究,就让这本书作为带我入门图像处理方面的一个新的起点吧
    发表于 01-07 18:57

    基于液滴流体的芯片系统的研究

     芯片系统 (Microfluidics) 或芯片实验室,是将化学和生物等领域中所涉
    的头像 发表于 11-21 16:30 676次阅读