0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习:基于语境的文本分类弱监督学习

深度学习自然语言处理 来源:深度学习自然语言处理 作者:丁磊 2021-01-18 16:04 次阅读

高成本的人工标签使得弱监督学习备受关注。seed-driven 是弱监督学习中的一种常见模型。该模型要求用户提供少量的seed words,根据seed words对未标记的训练数据生成伪标签,增加训练样本。

但是由于一词多义现象的存在,同一个seed word会出现在不同的类别中,从而增加生成正确伪标签的难度;同时,单词w在语料库中的所有位置都使用一个的词向量,也会降低分类模型的准确性。

而本篇论文主要贡献有:

开发一种无监督的方法,可以根据词向量和seed words,解决语料库中单词的一词多义问题。

设计一种排序机制,消除seed words中一些无效的单词;并将有效的单词扩充进seed words中。

模型整体结构为:

23886e4c-58b3-11eb-8b86-12bb97331649.png

第一步:使用聚类算法解决语料库中单词的一词多义问题

对于每一个单词 w, 假设w出现在语料库的n个不同位置, 分别为 ,使用K-Means算法将分成K类,这里K可理解为单词w的K个不同解释。

用下列公式计算K的值:

23bb05f0-58b3-11eb-8b86-12bb97331649.png

其中代表第i个聚类中心的向量。的计算方法如下:

240a0f10-58b3-11eb-8b86-12bb97331649.png

这里s表示一个seed word,且表示s在语料库第i次出现,对应的词向量为。

sim() 表示余弦函数,median( )表示取中位数。

则对于任意,有

24453194-58b3-11eb-8b86-12bb97331649.png

综上,一词多义问题解决算法如下:

249a483c-58b3-11eb-8b86-12bb97331649.png

使用上面算法,我们就可以将原始语料库转变为基于语境下的语料库:

24f7145e-58b3-11eb-8b86-12bb97331649.png

第二步:对未标记的训练数据生成伪标签令表示文档d的伪标签;表示类别为的seed word 集合;表示单词w出现在文档d的词频

2578e2f4-58b3-11eb-8b86-12bb97331649.png

第三步:使用基于语境下的语料库进行文档分类

本篇论文使用Hierarchical Attention Networks (HAN) 进行文本分类。

25a2678c-58b3-11eb-8b86-12bb97331649.png

第四步:设计排序函数,更新seed words我们设计出一个打分函数,用于表示单词w仅高频的出现在类别为的文档。分值越高,表示单词w对类别越重要。我们可以选择分值最高的前几个单词作为新的seed word。也可以剔除一些不重要的seed word。

264f65a4-58b3-11eb-8b86-12bb97331649.png

其中:

268ed78e-58b3-11eb-8b86-12bb97331649.png

表示类别为的文档的数量。表示类别为且含有单词w的文档的数量。表示在类别为的文档中,单词w的词频。

n为语料库D的文档总数目表示语料库D中含有单词w的文档的数量。

结果

我们的完整模型称为 ConWea,

而 ConWea-NoCon是 ConWea确实缺少第一步的变体。

ConWea-NoExpan是 ConWea确实缺少第四步的变体。

ConWea-WSD是将 ConWea第一步的方法换成Lesk算法。

271870fc-58b3-11eb-8b86-12bb97331649.png

责任编辑:xj

原文标题:【ACL2020】基于语境的文本分类弱监督学习

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 文本分类
    +关注

    关注

    0

    文章

    18

    浏览量

    7289
  • 机器学习
    +关注

    关注

    66

    文章

    8377

    浏览量

    132406
  • 深度学习
    +关注

    关注

    73

    文章

    5492

    浏览量

    120975

原文标题:【ACL2020】基于语境的文本分类弱监督学习

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    时空引导下的时间序列自监督学习框架

    【导读】最近,香港科技大学、上海AI Lab等多个组织联合发布了一篇时间序列无监督预训练的文章,相比原来的TS2Vec等时间序列表示学习工作,核心在于提出了将空间信息融入到预训练阶段,即在预训练阶段
    的头像 发表于 11-15 11:41 125次阅读
    时空引导下的时间序列自<b class='flag-5'>监督学习</b>框架

    GPU深度学习应用案例

    GPU在深度学习中的应用广泛且重要,以下是一些GPU深度学习应用案例: 一、图像识别 图像识别是深度学习
    的头像 发表于 10-27 11:13 327次阅读

    【《大语言模型应用指南》阅读体验】+ 基础知识学习

    收集海量的文本数据作为训练材料。这些数据集不仅包括语法结构的学习,还包括对语言的深层次理解,如文化背景、语境含义和情感色彩等。 自监督学习:模型采用自
    发表于 08-02 11:03

    【《大语言模型应用指南》阅读体验】+ 基础篇

    章节最后总结了机器学习分类:有监督学习、无监督学习、半监督学习、自监督学习和强化
    发表于 07-25 14:33

    利用Matlab函数实现深度学习算法

    在Matlab中实现深度学习算法是一个复杂但强大的过程,可以应用于各种领域,如图像识别、自然语言处理、时间序列预测等。这里,我将概述一个基本的流程,包括环境设置、数据准备、模型设计、训练过程、以及测试和评估,并提供一个基于Matlab的
    的头像 发表于 07-14 14:21 1897次阅读

    利用TensorFlow实现基于深度神经网络的文本分类模型

    要利用TensorFlow实现一个基于深度神经网络(DNN)的文本分类模型,我们首先需要明确几个关键步骤:数据预处理、模型构建、模型训练、模型评估与调优,以及最终的模型部署(尽管在本文中,我们将重点放在前四个步骤上)。下面,我将详细阐述这些步骤,并给出一个具体的示例。
    的头像 发表于 07-12 16:39 693次阅读

    神经网络如何用无监督算法训练

    神经网络作为深度学习的重要组成部分,其训练方式多样,其中无监督学习是一种重要的训练策略。无监督学习旨在从未标记的数据中发现数据内在的结构、模式或规律,从而提取有用的特征表示。这种训练方
    的头像 发表于 07-09 18:06 698次阅读

    深度学习中的时间序列分类方法

    时间序列分类(Time Series Classification, TSC)是机器学习深度学习领域的重要任务之一,广泛应用于人体活动识别、系统监测、金融预测、医疗诊断等多个领域。随
    的头像 发表于 07-09 15:54 705次阅读

    深度学习中的无监督学习方法综述

    应用中往往难以实现。因此,无监督学习深度学习中扮演着越来越重要的角色。本文旨在综述深度学习中的无监督学
    的头像 发表于 07-09 10:50 510次阅读

    卷积神经网络在文本分类领域的应用

    在自然语言处理(NLP)领域,文本分类一直是一个重要的研究方向。随着深度学习技术的飞速发展,卷积神经网络(Convolutional Neural Network,简称CNN)在图像识别领域取得了
    的头像 发表于 07-01 16:25 619次阅读

    深度学习模型训练过程详解

    深度学习模型训练是一个复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练一个深度学习模型,本质上是通过优化算法调整模型参数,使模型能够更好地拟合数据,提高预测或
    的头像 发表于 07-01 16:13 1089次阅读

    深度学习与传统机器学习的对比

    在人工智能的浪潮中,机器学习深度学习无疑是两大核心驱动力。它们各自以其独特的方式推动着技术的进步,为众多领域带来了革命性的变化。然而,尽管它们都属于机器学习的范畴,但
    的头像 发表于 07-01 11:40 1186次阅读

    深度解析深度学习下的语义SLAM

    随着深度学习技术的兴起,计算机视觉的许多传统领域都取得了突破性进展,例如目标的检测、识别和分类等领域。近年来,研究人员开始在视觉SLAM算法中引入深度
    发表于 04-23 17:18 1237次阅读
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>学习</b>下的语义SLAM

    人工智能中文本分类的基本原理和关键技术

    在本文中,我们全面探讨了文本分类技术的发展历程、基本原理、关键技术、深度学习的应用,以及从RNN到Transformer的技术演进。文章详细介绍了各种模型的原理和实战应用,旨在提供对文本分类
    的头像 发表于 12-16 11:37 1176次阅读
    人工智能中<b class='flag-5'>文本分类</b>的基本原理和关键技术

    基于transformer和自监督学习的路面异常检测方法分享

    铺设异常检测可以帮助减少数据存储、传输、标记和处理的压力。本论文描述了一种基于Transformer和自监督学习的新方法,有助于定位异常区域。
    的头像 发表于 12-06 14:57 1460次阅读
    基于transformer和自<b class='flag-5'>监督学习</b>的路面异常检测方法分享