0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NLP中的对抗训练到底是什么

深度学习自然语言处理 来源:深度学习自然语言处理 作者:李rumor 2021-01-18 17:17 次阅读

简介

对抗训练是一种引入噪声的训练方式,可以对参数进行正则化,提升模型鲁棒性和泛化能力。

对抗训练的假设是:给输入加上扰动之后,输出分布和原Y的分布一致

有监督的数据下使用交叉熵作为损失:

半监督数据下可计算KL散度:

扰动如何得来呢?这需要对抗的思想,即往增大损失的方向增加扰动

有监督下:

半监督下:

theta上面一个尖儿代表的是常数。目的是说在计算对抗扰动时虽然计算了梯度,但不对参数进行更新,因为当前得到的对抗扰动是对旧参数最优的。不理解的同学可以自己看下伪代码体会一下。

用一句话形容对抗训练的思路,就是在输入上进行梯度上升(增大loss),在参数上进行梯度下降(减小loss)。由于输入会进行embedding lookup,所以实际的做法是在embedding table上进行梯度上升。

接下来介绍不同的方法,后续方法优化的主要方向有两点:得到更优的扰动 & 提升训练速度

FGSM (Fast Gradient Sign Method): ICLR2015

FGSM是Goodfellow提出对抗训练时的方法,假设对于输入的梯度为:

那扰动肯定是沿着梯度的方向往损失函数的极大值走:

FGM (Fast Gradient Method): ICLR2017

FSGM是每个方向上都走相同的一步,Goodfellow后续提出的FGM则是根据具体的梯度进行scale,得到更好的对抗样本:

伪代码:

对于每个x: 1.计算x的前向loss、反向传播得到梯度 2.根据embedding矩阵的梯度计算出r,并加到当前embedding上,相当于x+r 3.计算x+r的前向loss,反向传播得到对抗的梯度,累加到(1)的梯度上 4.将embedding恢复为(1)时的值 5.根据(3)的梯度对参数进行更新

PGD (Projected Gradient Descent): ICLR2018

FGM直接通过epsilon参数一下子算出了对抗扰动,这样得到的可能不是最优的。因此PGD进行了改进,多迭代几次,慢慢找到最优的扰动。

引用[1]:

FGM简单粗暴的“一步到位”,可能走不到约束内的最优点。PGD则是“小步走,多走几步”,如果走出了扰动半径为epsilon的空间,就映射回“球面”上,以保证扰动不要过大

伪代码:

对于每个x: 1.计算x的前向loss、反向传播得到梯度并备份 对于每步t: 2.根据embedding矩阵的梯度计算出r,并加到当前embedding上,相当于x+r(超出范围则投影回epsilon内) 3.t不是最后一步:将梯度归0,根据1的x+r计算前后向并得到梯度 4.t是最后一步:恢复(1)的梯度,计算最后的x+r并将梯度累加到(1)上 5.将embedding恢复为(1)时的值 6.根据(4)的梯度对参数进行更新

可以看到,在循环中r是逐渐累加的,要注意的是最后更新参数只使用最后一个x+r算出来的梯度。

FreeAT (Free Adversarial Training): NIPS2019

从FGSM到PGD,主要是优化对抗扰动的计算,虽然取得了更好的效果,但计算量也一步步增加。对于每个样本,FGSM和FGM都只用计算两次,一次是计算x的前后向,一次是计算x+r的前后向。而PGD则计算了K+1次,消耗了更多的计算资源。因此FreeAT被提了出来,在PGD的基础上进行训练速度的优化。

FreeAT的思想是在对每个样本x连续重复m次训练,计算r时复用上一步的梯度,为了保证速度,整体epoch会除以m。r的更新公式为:

伪代码:

初始化r=0对于epoch=1...N/m: 对于每个x: 对于每步m: 1.利用上一步的r,计算x+r的前后向,得到梯度 2.根据梯度更新参数 3.根据梯度更新r

缺点:FreeLB指出,FreeAT的问题在于每次的r对于当前的参数都是次优的(无法最大化loss),因为当前r是由r(t-1)和theta(t-1)计算出来的,是对于theta(t-1)的最优。

注:

1.论文中提供伪代码,但源码中好像对1步输入做了归一化论文中并没有提到

2.个人认为可以把FreeAT当成执行m次的FGSM,最开始r=0,第一次更新的是x的梯度,之后开始迭代更新r,则根据x+r的梯度更新参数。但代码中有个问题是r只在最开始初始化,如果迭代到新的样本x2,也是根据上个样本的r进行更新的,这里我有些疑问,希望懂的大佬赐教下~

代码:https://github.com/mahyarnajibi/FreeAdversarialTraining/blob/d70774030871fa3207e09ce8528c1b84cd690603/main_free.py#L160

YOPO (You Only Propagate Once): NIPS2019

代码:https://github.com/a1600012888/YOPO-You-Only-Propagate-Once

YOPO的目标也是提升PGD的效率,这篇文章需要的理论知识比较雄厚,这里只简要介绍一下。

感兴趣又啃不下来原论文的同学(比如我)可以参考[9],如有解读错误欢迎指出~

极大值原理PMP(Pontryagin's maximum principle)是optimizer的一种,它将神经网络看作动力学系统。这个方法的优点是在优化网络参数时,层之间是解藕的。通过这个思想,我们可以想到,既然扰动是加在embedding层的,为什么每次还要计算完整的前后向传播呢?

基于这个想法,作者想复用后几层的梯度,假设p为定值:

则对r的更新就可以变为

我们可以先写出YOPO的梯度下降版本:

对于每个样本x初始化r(1,0)对于j=1,2,...,m: 1.根据r(j,0),计算p 对于s=0,1,...,n-1: 2.计算r(j,s+1) 3.另r(j+1,0)=r(j,n)

作者又提出了PMP版本的YOPO,并证明SGD的YOPO是PMP版的一种特殊形式。这样每次迭代r就只用到embedding的梯度就可以了。

引用[9]:

虽然YOPO-m-n只完成了m次完整的正反向传播,但是却实现了m*n次梯度下降。而PGD-r算法完成r次完整的正反向传播却只能实现r次梯度下降。这样看来,YOPO-m-n算法的效率明显更高,而实验也表明,只要使得m*n略大于r,YOPO-m-n的效果就能够与PGD-r相媲美。

然而故事的反转来的太快,FreeLB指出YOPO使用的假设对于ReLU-based网络不成立:

Interestingly, the analysis backing the extra update steps assumes a twice continuously differentiable loss, which does not hold for ReLU-based neural networks they experimented with, and thus the reasons for the success of such an algorithm remains obscure.

别问了,问就是PMP,来跟我一起进入下一部份的学习。

FreeLB (Free Large-Batch): ICLR2020

FreeLB认为,FreeAT和YOPO对于获得最优r (inner max)的计算都存在问题,因此提出了一种类似PGD的方法。只不过PGD只使用了最后一步x+r输出的梯度,而FreeLB取了每次迭代r输出梯度的平均值,相当于把输入看作一个K倍大的虚拟batch,由[X+r1, X+r2, ..., X+rk]拼接而成。具体的公式为:

为了方便对比,再贴下论文中PGD的公式:

FreeLB和PGD主要有两点区别:

1.PGD是迭代K次r后取最后一次扰动的梯度更新参数,FreeLB是取K次迭代中的平均梯度

2.PGD的扰动范围都在epsilon内,因为伪代码第3步将梯度归0了,每次投影都会回到以第1步x为圆心,半径是epsilon的圆内,而FreeLB每次的x都会迭代,所以r的范围更加灵活,更可能接近局部最优:

FreeLB的伪代码为:

对于每个x: 1.通过均匀分布初始化r,梯度g为0 对于每步t=1...K: 2.根据x+r计算前后向,累计梯度g 3.更新r 4.根据g/K更新梯度

论文中还指出了很重要的一点,就是对抗训练和dropout不能同时使用,加上dropout相当于改变了网络结构,会影响r的计算。如果要用的话需要在K步中都使用同一个mask。

SMART (SMoothness-inducing Adversarial Regularization)

SMART论文中提出了两个方法:

1.对抗正则 SMoothness-inducing Adversarial Regularization,提升模型鲁棒性

2.优化算法 Bregman proximal point optimization,避免灾难性遗忘

本文只介绍其中的对抗正则方法。

SMART提出了两种对抗正则损失,加到损失函数中:

第一种参考了半监督对抗训练,对抗的目标是最大化扰动前后的输出,在分类任务时loss采用对称的KL散度,回归任务时使用平方损失损失:

第二种方法来自DeepMind的NIPS2019[8],核心思想是让模型学习到的流行更光滑,即让loss在训练数据呈线性变化,增强对扰动的抵抗能力。作者认为,如果loss流行足够平滑,那l(x+r)可以用一阶泰勒展开进行近似,因此用来对抗的扰动需要最大化l(x+r)和一阶泰勒展开的距离:

SMART的算法和PGD相似,也是迭代K步找到最优r,然后更新梯度。

总结

把最近的一些对抗训练方法总结出来,可以看到趋势从“优化PGD的速度”又回到了“找寻最优扰动”,个人也比较认同,训练速度慢一些对于普通模型还是可以接受的,主要还是看最终的效果有没有提升。之前自己试过FGM和PGD,FGM有轻微提升,但PGD没有,应该需要在超参数上进行调整。FreeLB和SMART在GLUE榜单上都有出现过,相信之后对抗训练也是标配了,坐等微软放出源码。

参考文献:

[1]. 知乎:【炼丹技巧】功守道:NLP中的对抗训练 + PyTorch实现

[2]. FGSM: Explaining and Harnessing Adversarial Examples

[3]. FGM: Adversarial Training Methods for Semi-Supervised Text Classification

[4]. FreeAT: Adversarial Training for Free!

[5]. YOPO: You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle

[6]. FreeLB: Enhanced Adversarial Training for Language Understanding

[7]. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural

[8]. Adversarial Robustness through Local Linearization

[9]. 知乎:加速对抗训练——YOPO算法浅析

责任编辑:xj

原文标题:一文搞懂NLP中的对抗训练

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 自然语言处理

    关注

    1

    文章

    611

    浏览量

    13503
  • nlp
    nlp
    +关注

    关注

    1

    文章

    487

    浏览量

    22006

原文标题:一文搞懂NLP中的对抗训练

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    TLV320AIC3254内部的ADC处理模块和minidsp到底是什么关系?

    我想请问一下几个问题: 1.3254内部的ADC处理模块和minidsp到底是什么关系,是并列的还是串行关系?还是ADC处理模块就是minidsp特殊情况下的部分? 2.minidsp的抽取因子该怎么理解,到底怎么使用?
    发表于 10-31 06:02

    请问PCM2903C的温度范围到底是多少呢?

    如下图,PCM2903C的温度范围到底是多少呢? 如果用在-25~85℃,是否会出问题?
    发表于 10-14 07:14

    功放和运放到底是什么区别?

    想请问一下功放和运放到底是什么区别,感觉只要接一个小负载,运放的输出电流也可以很大啊?到底有什么区别啊
    发表于 09-10 07:00

    请问LMV772到底是双电源还是单电源啊?

    请问LMV772到底是双电源还是单电源啊?手册前面写的太模糊了。求指教
    发表于 09-09 07:10

    运放的输入电容到底是什么?

    我想请问一下运放的输入电容到底是什么?
    发表于 09-04 06:52

    LMH6502的输入电压到底是多少?

    LMH6502的输入电压到底是多少,我稍微给如大一点点的信号,放大不行还能接受,我衰减都失真,
    发表于 08-27 07:02

    对于STM8的固件库,到底是怎么对文件进行配置的?

    对于STM8的固件库,到底是怎么对文件进行配置的?
    发表于 05-17 15:59

    共享单车到底是什么通信原理

    我们经常骑的共享单车到底是什么通信原理,有人了解过吗? 一、智能车锁 共享单车最核心的硬件是智能车锁,主要用于实现控制和定位功能。
    发表于 04-09 10:33 805次阅读
    共享单车<b class='flag-5'>到底是</b>什么通信原理

    电子设备的“超级电容器”到底是什么?

    电子设备的“超级电容器”到底是什么?我们提到过电容器与普通电池的不同在于能量密度不同,与标准电容器相比,它还具有更高的电能存储能力。超级电容器不能像电池一样存储尽可能多的功率,但它可以存储比电容器
    的头像 发表于 03-11 08:56 468次阅读
    电子设备<b class='flag-5'>中</b>的“超级电容器”<b class='flag-5'>到底是</b>什么?

    共享单车到底是什么通信原理?

    我们经常骑的共享单车到底是什么通信原理,有人了解过吗?下面宝蓝小编就带大家了解下。
    的头像 发表于 02-25 10:32 1335次阅读
    共享单车<b class='flag-5'>到底是</b>什么通信原理?

    请问M487KMCAN的SRAM到底是128KB还是160K?

    M487KMCAN的SRAM到底是128 KB 还是160K
    发表于 01-16 07:18

    MES的本质到底是什么?

     MES的本质到底是什么?  1.一套生产现场的综合管理的集成系统。用集成的思想替代原来的设备管理、质量管理、生产排程、DNC、数据采集软件等车间需要使用的孤立的软件系统。2. MES在信息化系统
    发表于 12-07 11:03 0次下载

    AD9248的VIN+A、VIN-A等对地的输入电压范围到底是多少?

    查看AD9248的手册,电气特性似乎并没有标注模拟输入电压范围,只写了电压跨度(个人猜测应该是说的差分输入的跨度)。AD9248的VIN+A、VIN-A等对地的输入电压范围到底是多少?虽然绝对最大额定值里面有写,输入的安全范围应该是多少?
    发表于 12-05 07:54

    去耦滤波电容怎么布局摆放,到底是先大后小还是先小后大?

    去耦滤波电容怎么布局摆放,到底是先大后小还是先小后大?
    的头像 发表于 12-04 15:43 2285次阅读
    去耦滤波电容怎么布局摆放,<b class='flag-5'>到底是</b>先大后小还是先小后大?

    请问AD9684最低采样率到底是多少?

    关于AD9684最低采样率,数据手册有两处描述,但是不一致。请问AD9684最低采样率到底是多少?
    发表于 12-04 06:34